Remaining Useful Life Prediction Based on Incremental Learning

被引:4
|
作者
Que, Zijun [1 ,2 ]
Jin, Xiaohang [3 ,4 ,5 ]
Xu, Zhengguo [1 ,2 ]
Hu, Chang [6 ,7 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Huzhou Inst, Huzhou 313000, Peoples R China
[3] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
[4] Zhejiang Univ Technol, Key Lab Special Purpose Equipment & Adv Proc Techn, Minist Educ & Zhejiang Prov, Hangzhou 310023, Peoples R China
[5] Ninghai ZJUT Acad Sci & Technol, Ninghai 315600, Peoples R China
[6] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[7] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Gate recurrent unit (GRU); incremental learning; orthogonal weight modification (OWM); projector; remaining useful life (RUL) prediction; PROGNOSTICS; NETWORK; LSTM;
D O I
10.1109/TR.2023.3294939
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Remaining useful life (RUL) prediction based on machine learning assumes that there are enough representative data for training models. However, it is impossible to have so many representative data considering security, economy factors, and so on. Thus, an incremental learning based RUL prediction approach is proposed to address this problem. First, a novel sequence input vector is constructed from the limited condition monitoring data, and it is proved that the input subspace have orthogonal properties, which is a necessary assumption to ensure the existence of a projector. Second, a projector is constructed to find a weight configuration for avoiding catastrophic forgetting. Finally, an integrated gate recurrent unit model is constructed to map the relationship between condition monitoring data and RUL. A benchmark-bearing case study, whose results indicate that the approach can update fundamental model with the acquisition of new degradation cases, demonstrates the effectiveness.
引用
收藏
页码:876 / 884
页数:9
相关论文
共 50 条
  • [31] Industrial Big Data Analytics for Prediction of Remaining Useful Life Based on Deep Learning
    Yan, Hehua
    Wan, Jiafu
    Zhang, Chunhua
    Tang, Shenglong
    Hua, Qingsong
    Wang, Zhongren
    IEEE ACCESS, 2018, 6 : 17190 - 17197
  • [32] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [33] Feature Extraction Based on Self-Supervised Learning for Remaining Useful Life Prediction
    Yu, Zhenjun
    Lei, Ningbo
    Mo, Yu
    Xu, Xin
    Li, Xiu
    Huang, Biqing
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (02)
  • [34] Shapelet selection based on a genetic algorithm for remaining useful life prediction with supervised learning
    Ahn, Gilseung
    Jin, Min-Ki
    Hwang, Seok-Beom
    Hur, Sun
    HELIYON, 2022, 8 (12)
  • [35] A review of remaining useful life prediction for stochastic degrading devices based on machine learning
    Zhang, Bo
    Hu, Changhua
    Zhang, Hao
    Zheng, Jianfei
    Zhang, Jianxun
    Mou, Hanxiao
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2024, 45 (09): : 1783 - 1790
  • [36] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):
  • [37] A Deep Learning-based Remaining Useful Life Prediction Approach for Engineering Systems
    Zhao, Yuyu
    Wang, Yuxiao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6249 - 6254
  • [38] A deep learning-based approach for electrical equipment remaining useful life prediction
    Fu H.
    Liu Y.
    Autonomous Intelligent Systems, 2022, 2 (01):
  • [39] Prediction of the Remaining Useful Life of Supercapacitors
    Yi, Zhenxiao
    Zhao, Kun
    Sun, Jianrui
    Wang, Licheng
    Wang, Kai
    Ma, Yongzhi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [40] Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms
    Sekhar, J. N. Chandra
    Domathoti, Bullarao
    Gonzalez, Ernesto D. R. Santibanez
    SUSTAINABILITY, 2023, 15 (21)