Remaining Useful Life Prediction Based on Incremental Learning

被引:4
|
作者
Que, Zijun [1 ,2 ]
Jin, Xiaohang [3 ,4 ,5 ]
Xu, Zhengguo [1 ,2 ]
Hu, Chang [6 ,7 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Huzhou Inst, Huzhou 313000, Peoples R China
[3] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
[4] Zhejiang Univ Technol, Key Lab Special Purpose Equipment & Adv Proc Techn, Minist Educ & Zhejiang Prov, Hangzhou 310023, Peoples R China
[5] Ninghai ZJUT Acad Sci & Technol, Ninghai 315600, Peoples R China
[6] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[7] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Gate recurrent unit (GRU); incremental learning; orthogonal weight modification (OWM); projector; remaining useful life (RUL) prediction; PROGNOSTICS; NETWORK; LSTM;
D O I
10.1109/TR.2023.3294939
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Remaining useful life (RUL) prediction based on machine learning assumes that there are enough representative data for training models. However, it is impossible to have so many representative data considering security, economy factors, and so on. Thus, an incremental learning based RUL prediction approach is proposed to address this problem. First, a novel sequence input vector is constructed from the limited condition monitoring data, and it is proved that the input subspace have orthogonal properties, which is a necessary assumption to ensure the existence of a projector. Second, a projector is constructed to find a weight configuration for avoiding catastrophic forgetting. Finally, an integrated gate recurrent unit model is constructed to map the relationship between condition monitoring data and RUL. A benchmark-bearing case study, whose results indicate that the approach can update fundamental model with the acquisition of new degradation cases, demonstrates the effectiveness.
引用
收藏
页码:876 / 884
页数:9
相关论文
共 50 条
  • [21] Adversarial Transfer Learning for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Kwoh, Chee Keong
    Li, Xiaoli
    2020 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2020,
  • [22] Remaining Useful Life Prediction Based on Forward Intensity
    Xiao, Peihong
    Wang, Yudong
    Liu, Wenting
    Ye, Zhi-Sheng
    TECHNOMETRICS, 2024,
  • [23] Deep Learning Approaches to Remaining Useful Life Prediction: A Survey
    Cummins, Logan
    Killen, Brad
    Thomas, Kirby
    Barrett, Paul
    Rahimi, Shahram
    Seale, Maria
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [24] Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis
    Wei, Meng
    Balaya, Palani
    Ye, Min
    Song, Ziyou
    ENERGY, 2022, 261
  • [25] Remaining useful life prediction based on spatiotemporal autoencoder
    Xu, Tao
    Pi, Dechang
    Zeng, Shi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71407 - 71433
  • [26] Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning
    He, Wenbin
    Liu, Ting
    Ming, Wuyi
    Li, Zongze
    Du, Jinguang
    Li, Xiaoke
    Guo, Xudong
    Sun, Peiyan
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 192
  • [27] Remaining useful life prediction with insufficient degradation data based on deep learning approach
    Lyu, Yi
    Jiang, Yijie
    Zhang, Qichen
    Chen, Ci
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (04): : 745 - 756
  • [28] Prediction of Equipment Remaining Useful Life Based on Graph Learning and Spatiotemporal Knowledge Graph
    Men, Changhao
    Han, Yu
    Huang, Cheng-Geng
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2025,
  • [29] Uncertainty Quantification and Interval Prediction of Equipment Remaining Useful Life Based on Semisupervised Learning
    Liu, Hui
    Liu, Zhenyu
    Zhang, Donghao
    Jia, Weiqiang
    Xin, Xiaopeng
    Tan, Jianrong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [30] Interpretable Remaining Useful Life Prediction Based on Causal Feature Selection and Deep Learning
    Li, Min
    Luo, Meiling
    Ke, Ting
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 : 148 - 160