Superpixel Attack Enhancing Black-Box Adversarial Attack with Image-Driven Division Areas

被引:0
|
作者
Oe, Issa [1 ]
Yamamura, Keiichiro [1 ]
Ishikura, Hiroki [1 ]
Hamahira, Ryo [1 ]
Fujisawa, Katsuki [2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
[2] Kyushu Univ, Inst Math Ind, Fukuoka, Japan
基金
日本科学技术振兴机构;
关键词
adversarial attack; security for AI; computer vision; deep learning;
D O I
10.1007/978-981-99-8388-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models are used in safety-critical tasks such as automated driving and face recognition. However, small perturbations in the model input can significantly change the predictions. Adversarial attacks are used to identify small perturbations that can lead to misclassifications. More powerful black-box adversarial attacks are required to develop more effective defenses. A promising approach to black-box adversarial attacks is to repeat the process of extracting a specific image area and changing the perturbations added to it. Existing attacks adopt simple rectangles as the areas where perturbations are changed in a single iteration. We propose applying superpixels instead, which achieve a good balance between color variance and compactness. We also propose a new search method, versatile search, and a novel attack method, Superpixel Attack, which applies superpixels and performs versatile search. Superpixel Attack improves attack success rates by an average of 2.10% compared with existing attacks. Most models used in this study are robust against adversarial attacks, and this improvement is significant for blackbox adversarial attacks. The code is available at https://github.com/oe1307/SuperpixelAttack.git.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 50 条
  • [31] IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
    Jia, Shuai
    Song, Yibing
    Ma, Chao
    Yang, Xiaokang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6705 - 6714
  • [32] Query efficient black-box adversarial attack on deep neural networks
    Bai, Yang
    Wang, Yisen
    Zeng, Yuyuan
    Jiang, Yong
    Xia, Shu-Tao
    PATTERN RECOGNITION, 2023, 133
  • [33] Hard-label Black-box Universal Adversarial Patch Attack
    Tao, Guanhong
    An, Shengwei
    Cheng, Siyuan
    Shen, Guangyu
    Zhang, Xiangyu
    PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 697 - 714
  • [34] A low-query black-box adversarial attack based on transferability
    Ding, Kangyi
    Liu, Xiaolei
    Niu, Weina
    Hu, Teng
    Wang, Yanping
    Zhang, Xiaosong
    KNOWLEDGE-BASED SYSTEMS, 2021, 226
  • [35] Restricted Black-Box Adversarial Attack Against DeepFake Face Swapping
    Dong, Junhao
    Wang, Yuan
    Lai, Jianhuang
    Xie, Xiaohua
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2596 - 2608
  • [36] Data-Free Adversarial Perturbations for Practical Black-Box Attack
    Huan, Zhaoxin
    Wang, Yulong
    Zhang, Xiaolu
    Shang, Lin
    Fu, Chilin
    Zhou, Jun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 127 - 138
  • [37] Local Black-box Adversarial Attack based on Random Segmentation Channel
    Xu, Li
    Yang, Zejin
    Guo, Huiting
    Wan, Xu
    Fan, Chunlong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1437 - 1442
  • [38] Boosting Black-Box Attack with Partially Transferred Conditional Adversarial Distribution
    Feng, Yan
    Wu, Baoyuan
    Fan, Yanbo
    Liu, Li
    Li, Zhifeng
    Xia, Shu-Tao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15074 - 15083
  • [39] TSadv: Black-box adversarial attack on time series with local perturbations
    Yang, Wenbo
    Yuan, Jidong
    Wang, Xiaokang
    Zhao, Peixiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [40] An adversarial attack on DNN-based black-box object detectors
    Wang, Yajie
    Tan, Yu-an
    Zhang, Wenjiao
    Zhao, Yuhang
    Kuang, Xiaohui
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 161