Superpixel Attack Enhancing Black-Box Adversarial Attack with Image-Driven Division Areas

被引:0
|
作者
Oe, Issa [1 ]
Yamamura, Keiichiro [1 ]
Ishikura, Hiroki [1 ]
Hamahira, Ryo [1 ]
Fujisawa, Katsuki [2 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
[2] Kyushu Univ, Inst Math Ind, Fukuoka, Japan
基金
日本科学技术振兴机构;
关键词
adversarial attack; security for AI; computer vision; deep learning;
D O I
10.1007/978-981-99-8388-9_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning models are used in safety-critical tasks such as automated driving and face recognition. However, small perturbations in the model input can significantly change the predictions. Adversarial attacks are used to identify small perturbations that can lead to misclassifications. More powerful black-box adversarial attacks are required to develop more effective defenses. A promising approach to black-box adversarial attacks is to repeat the process of extracting a specific image area and changing the perturbations added to it. Existing attacks adopt simple rectangles as the areas where perturbations are changed in a single iteration. We propose applying superpixels instead, which achieve a good balance between color variance and compactness. We also propose a new search method, versatile search, and a novel attack method, Superpixel Attack, which applies superpixels and performs versatile search. Superpixel Attack improves attack success rates by an average of 2.10% compared with existing attacks. Most models used in this study are robust against adversarial attacks, and this improvement is significant for blackbox adversarial attacks. The code is available at https://github.com/oe1307/SuperpixelAttack.git.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 50 条
  • [21] HYBRID ADVERSARIAL SAMPLE CRAFTING FOR BLACK-BOX EVASION ATTACK
    Zheng, Juan
    He, Zhimin
    Lin, Zhe
    2017 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2017, : 236 - 242
  • [22] Black-box adversarial attacks on XSS attack detection model
    Wang, Qiuhua
    Yang, Hui
    Wu, Guohua
    Choo, Kim-Kwang Raymond
    Zhang, Zheng
    Miao, Gongxun
    Ren, Yizhi
    COMPUTERS & SECURITY, 2022, 113
  • [23] Optimized Gradient Boosting Black-Box Adversarial Attack Algorithm
    Liu, Mengting
    Ling, Jie
    Computer Engineering and Applications, 2023, 59 (18) : 260 - 267
  • [24] Evolutionary Multilabel Adversarial Examples: An Effective Black-Box Attack
    Kong L.
    Luo W.
    Zhang H.
    Liu Y.
    Shi Y.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (03): : 562 - 572
  • [25] Black-box Adversarial Attack on License Plate Recognition System
    Chen J.-Y.
    Shen S.-J.
    Su M.-M.
    Zheng H.-B.
    Xiong H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 121 - 135
  • [26] Substitute Meta-Learning for Black-Box Adversarial Attack
    Hu, Cong
    Xu, Hao-Qi
    Wu, Xiao-Jun
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2472 - 2476
  • [27] Black-box Adversarial Attack and Defense on Graph Neural Networks
    Li, Haoyang
    Di, Shimin
    Li, Zijian
    Chen, Lei
    Cao, Jiannong
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1017 - 1030
  • [28] Towards Efficient Data Free Black-box Adversarial Attack
    Zhang, Jie
    Li, Bo
    Xu, Jianghe
    Wu, Shuang
    Ding, Shouhong
    Zhang, Lei
    Wu, Chao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15094 - 15104
  • [29] A black-box adversarial attack strategy with adjustable sparsity and generalizability for deep image classifiers
    Ghosh, Arka
    Mullick, Sankha Subhra
    Datta, Shounak
    Das, Swagatam
    Das, Asit Kr
    Mallipeddi, Rammohan
    PATTERN RECOGNITION, 2022, 122
  • [30] Projection & Probability-Driven Black-Box Attack
    Li, Jie
    Li, Rongrong
    Liu, Hong
    Liu, Jianzhuang
    Zhong, Bineng
    Deng, Cheng
    Tian, Qi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 359 - 368