Short-Term Power Load Forecasting in Three Stages Based on CEEMDAN-TGA Model

被引:10
|
作者
Hong, Yan [1 ,2 ,3 ]
Wang, Ding [2 ]
Su, Jingming [2 ]
Ren, Maowei [2 ]
Xu, Wanqiu [2 ]
Wei, Yuhao [2 ]
Yang, Zhen [1 ,3 ]
机构
[1] State Key Lab Min Response & Disaster Prevent & Co, Anhui Univ Sci & Technol, Huainan 232000, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Elect & Informat Engn, Huainan 232001, Peoples R China
[3] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
关键词
three stages; power load forecasting; CEEMDAN; TCN; GRU; attention mechanisms; short term; DECOMPOSITION; PREDICTION; REGRESSION; TREND;
D O I
10.3390/su151411123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Short-term load forecasting (STLF) is crucial for intelligent energy and power scheduling. The time series of power load exhibits high volatility and complexity in its components (typically seasonality, trend, and residuals), which makes forecasting a challenge. To reduce the volatility of the power load sequence and fully explore the important information within it, a three-stage short-term power load forecasting model based on CEEMDAN-TGA is proposed in this paper. Firstly, the power load dataset is divided into the following three stages: historical data, prediction data, and the target stage. The CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise) decomposition is applied to the first- and second-stage load sequences, and the reconstructed intrinsic mode functions (IMFs) are classified based on their permutation entropies to obtain the error for the second stage. After that, the TCN (temporal convolutional network), GRU (gated recurrent unit), and attention mechanism are combined in the TGA model to predict the errors for the third stage. The third-stage power load sequence is predicted by employing the TGA model in conjunction with the extracted trend features from the first and second stages, as well as the seasonal impact features. Finally, it is merged with the error term. The experimental results show that the forecast performance of the three-stage forecasting model based on CEEMDAN-TGA is superior to those of the TCN-GRU and TCN-GRU-Attention models, with a reduction of 42.77% in MAE, 46.37% in RMSE, and 45.0% in MAPE. In addition, the R2 could be increased to 0.98. It is evident that utilizing CEEMDAN for load sequence decomposition reduces volatility, and the combination of the TCN and the attention mechanism enhances the ability of GRU to capture important information features and assign them higher weights. The three-stage approach not only predicts the errors in the target load sequence, but also extracts trend features from historical load sequences, resulting in a better overall performance compared to the TCN-GRU and TCN-GRU-Attention models.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Short-term power load forecasting based on gray theory
    Herui, C. (cuiherui1967@126.com), 2013, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [32] Short Term Load Forecasting Based on SBiGRU and CEEMDAN-SBiGRU Combined Model
    Chen, Tian
    Huang, Wei
    Wu, Rujun
    Ouyang, Huabing
    IEEE ACCESS, 2021, 9 : 89311 - 89324
  • [33] Short-Term Solar Power Forecasting Based on CEEMDAN and Kernel Extreme Learning Machine
    Gun, Ali Riza
    Dokur, Emrah
    Yuzgec, Ugur
    Kurban, Mehmet
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2023, 29 (02) : 28 - 34
  • [34] Short-term PV Output Power Forecasting Based on CEEMDAN-AE-GRU
    Na Zhang
    Qiang Ren
    Guangchen Liu
    Liping Guo
    Jingyu Li
    Journal of Electrical Engineering & Technology, 2022, 17 : 1183 - 1194
  • [35] Short-term PV Output Power Forecasting Based on CEEMDAN-AE-GRU
    Zhang, Na
    Ren, Qiang
    Liu, Guangchen
    Guo, Liping
    Li, Jingyu
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (02) : 1183 - 1194
  • [36] Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer
    Huang, Shichao
    Zhang, Jing
    He, Yu
    Fu, Xiaofan
    Fan, Luqin
    Yao, Gang
    Wen, Yongjun
    ENERGIES, 2022, 15 (10)
  • [37] Power system short-term load forecasting
    Wang, Jingyao
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY (ICMMCT 2017), 2017, 126 : 250 - 253
  • [38] Short-term load forecasting of power system
    Xu, Xiaobin
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839
  • [39] Short-Term Load Forecasting with Improved CEEMDAN and GWO-Based Multiple Kernel ELM
    Li, Taiyong
    Qian, Zijie
    He, Ting
    COMPLEXITY, 2020, 2020
  • [40] A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting
    Ren, Chang
    Jia, Li
    Wang, Zhangliang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 182 - 186