Short-Term Power Load Forecasting in Three Stages Based on CEEMDAN-TGA Model

被引:10
|
作者
Hong, Yan [1 ,2 ,3 ]
Wang, Ding [2 ]
Su, Jingming [2 ]
Ren, Maowei [2 ]
Xu, Wanqiu [2 ]
Wei, Yuhao [2 ]
Yang, Zhen [1 ,3 ]
机构
[1] State Key Lab Min Response & Disaster Prevent & Co, Anhui Univ Sci & Technol, Huainan 232000, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Elect & Informat Engn, Huainan 232001, Peoples R China
[3] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
关键词
three stages; power load forecasting; CEEMDAN; TCN; GRU; attention mechanisms; short term; DECOMPOSITION; PREDICTION; REGRESSION; TREND;
D O I
10.3390/su151411123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Short-term load forecasting (STLF) is crucial for intelligent energy and power scheduling. The time series of power load exhibits high volatility and complexity in its components (typically seasonality, trend, and residuals), which makes forecasting a challenge. To reduce the volatility of the power load sequence and fully explore the important information within it, a three-stage short-term power load forecasting model based on CEEMDAN-TGA is proposed in this paper. Firstly, the power load dataset is divided into the following three stages: historical data, prediction data, and the target stage. The CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise) decomposition is applied to the first- and second-stage load sequences, and the reconstructed intrinsic mode functions (IMFs) are classified based on their permutation entropies to obtain the error for the second stage. After that, the TCN (temporal convolutional network), GRU (gated recurrent unit), and attention mechanism are combined in the TGA model to predict the errors for the third stage. The third-stage power load sequence is predicted by employing the TGA model in conjunction with the extracted trend features from the first and second stages, as well as the seasonal impact features. Finally, it is merged with the error term. The experimental results show that the forecast performance of the three-stage forecasting model based on CEEMDAN-TGA is superior to those of the TCN-GRU and TCN-GRU-Attention models, with a reduction of 42.77% in MAE, 46.37% in RMSE, and 45.0% in MAPE. In addition, the R2 could be increased to 0.98. It is evident that utilizing CEEMDAN for load sequence decomposition reduces volatility, and the combination of the TCN and the attention mechanism enhances the ability of GRU to capture important information features and assign them higher weights. The three-stage approach not only predicts the errors in the target load sequence, but also extracts trend features from historical load sequences, resulting in a better overall performance compared to the TCN-GRU and TCN-GRU-Attention models.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Short-term power load forecasting based on AC-BiLSTM model☆
    Liu, Fang
    Liang, Chen
    ENERGY REPORTS, 2024, 11 : 1570 - 1579
  • [22] Short-Term Load Forecasting Based on the Transformer Model
    Zhao, Zezheng
    Xia, Chunqiu
    Chi, Lian
    Chang, Xiaomin
    Li, Wei
    Yang, Ting
    Zomaya, Albert Y.
    INFORMATION, 2021, 12 (12)
  • [23] Short-term load forecasting based on SV model
    Chen, Hao
    Wang, Yurong
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (11): : 86 - 89
  • [24] An Informer Model for Very Short-Term Power Load Forecasting
    Yang, Zhihe
    Li, Jiandun
    Wang, Haitao
    Liu, Chang
    ENERGIES, 2025, 18 (05)
  • [25] New PSO-SVM Short-Term Wind Power Forecasting Algorithm Based on the CEEMDAN Model
    You, Hong
    Bai, Shixiong
    Wang, Rui
    Li, Zhixiong
    Xiang, Shuchen
    Huang, Feng
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022
  • [26] Short-Term Forecasting of Wind Power Using CEEMDAN-ICOA-GRU Model
    Wu, Yun
    Zheng, Wei
    Zhao, Yongbin
    Yang, Jieming
    An, Ning
    Feng, Dan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 213 - 229
  • [27] Short-term load forecasting based on LSTNet in power system
    Liu, Rong
    Chen, Luan
    Hu, Weihao
    Huang, Qi
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (12)
  • [28] Short-term Power Load Forecasting Based on Balanced KNN
    Lv, Xianlong
    Cheng, Xingong
    YanShuang
    Tang Yan-mei
    2017 INTERNATIONAL SYMPOSIUM ON APPLICATION OF MATERIALS SCIENCE AND ENERGY MATERIALS (SAMSE 2017), 2018, 322
  • [29] Short-Term Power Load Forecasting Based on HFEMD and GALSTM
    Jin, Ji
    Wang, Bin
    Zhang, Yuhan
    Yu, Min
    Zheng, Xiaojiao
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1612 - 1617
  • [30] Short-term power load forecasting based on big data
    State Grid Information & Telecommunication Branch, Xicheng District, Beijing
    100761, China
    不详
    100070, China
    不详
    100031, China
    Zhongguo Dianji Gongcheng Xuebao, 1 (37-42):