A note on the width of sparse random graphs

被引:1
|
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [41] Majority dynamics on sparse random graphs
    Chakraborti, Debsoumya
    Kim, Jeong Han
    Lee, Joonkyung
    Tran, Tuan
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 171 - 191
  • [42] The friendship paradox for sparse random graphs
    Hazra, Rajat Subhra
    den Hollander, Frank
    Parvaneh, Azadeh
    PROBABILITY THEORY AND RELATED FIELDS, 2025,
  • [43] EXTREMAL CUTS OF SPARSE RANDOM GRAPHS
    Dembo, Amir
    Montanari, Andrea
    Sen, Subhabrata
    ANNALS OF PROBABILITY, 2017, 45 (02): : 1190 - 1217
  • [44] Sparse quasi-random graphs
    Chung, F
    Graham, R
    COMBINATORICA, 2002, 22 (02) : 217 - 244
  • [45] INDEPENDENT SETS IN RANDOM SPARSE GRAPHS
    GAZMURI, PG
    NETWORKS, 1984, 14 (03) : 367 - 377
  • [46] Independent Sets of Random Trees and Sparse Random Graphs
    Heilman, Steven
    JOURNAL OF GRAPH THEORY, 2025,
  • [47] CUTOFF FOR NONBACKTRACKING RANDOM WALKS ON SPARSE RANDOM GRAPHS
    Ben-Hamou, Anna
    Salez, Justin
    ANNALS OF PROBABILITY, 2017, 45 (03): : 1752 - 1770
  • [48] Large hypertree width for sparse random hypergraphs
    Liu, Tian
    Wang, Chaoyi
    Xu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (03) : 531 - 540
  • [49] Large hypertree width for sparse random hypergraphs
    Tian Liu
    Chaoyi Wang
    Ke Xu
    Journal of Combinatorial Optimization, 2015, 29 : 531 - 540
  • [50] A Note on Strong Edge Coloring of Sparse Graphs
    Wei Dong
    Rui Li
    Bao Gang Xu
    Acta Mathematica Sinica, English Series, 2019, 35 : 577 - 582