A note on the width of sparse random graphs

被引:1
|
作者
Do, Tuan Anh [1 ]
Erde, Joshua [1 ,2 ]
Kang, Mihyun [1 ]
机构
[1] Graz Univ Technol, Inst Discrete Math, Graz, Austria
[2] Graz Univ Technol, Inst Discrete Math, Steyrergasse 30, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
graph expansion; random graph; rank-width; tree-width; RANK-WIDTH; EXPANDERS; MINORS;
D O I
10.1002/jgt.23081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G(n,p) when p=(1+& varepsilon;)/(n) for & varepsilon;>0 constant. Our proofs avoid the use, as a black box, of a result of Benjamini, Kozma and Wormald on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on & varepsilon;. Finally, we also consider the width of the random graph in the weakly supercritical regime, where & varepsilon;=o(1) and & varepsilon;(3)n ->infinity. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G(n,p) as a function of n and & varepsilon;.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [31] FLOODING IN WEIGHTED SPARSE RANDOM GRAPHS
    Amini, Hamed
    Draief, Moez
    Lelarge, Marc
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 1 - 26
  • [32] Sparse random graphs: Eigenvalues and eigenvectors
    Tran, Linh V.
    Vu, Van H.
    Wang, Ke
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) : 110 - 134
  • [33] Uniformly Random Colourings of Sparse Graphs
    Hurley, Eoin
    Pirot, Francois
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1357 - 1370
  • [34] The cover time of sparse random graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 1 - 16
  • [35] Sparse Quasi-Random Graphs
    Fan Chung
    Ronald Graham
    Combinatorica, 2002, 22 : 217 - 244
  • [36] Sparse Graphs: Metrics and Random Models
    Bollobas, Bela
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (01) : 1 - 38
  • [37] PUSH IS FAST ON SPARSE RANDOM GRAPHS
    Meier, Florian
    Peter, Ueli
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 29 - 49
  • [38] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [39] Cycle lengths in sparse random graphs
    Alon, Yahav
    Krivelevich, Michael
    Lubetzky, Eyal
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 444 - 461
  • [40] Chromatic Thresholds in Sparse Random Graphs
    Allen, Peter
    Bottcher, Julia
    Griffiths, Simon
    Kohayakawa, Yoshiharu
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 215 - 236