On the multifractal measures: proportionality and dimensions of Moran sets

被引:2
|
作者
Selmi, Bilel [1 ]
Yuan, Zhihui [2 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
[2] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifractal analysis; Homogeneous Cantor sets; Hausdorff dimension; Packing dimension; Homogeneous Moran measures; SINGULARITY SPECTRUM;
D O I
10.1007/s12215-023-00873-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to discuss the proportionality of the multifractal measures. We will prove that the ratio of the multifractal measures is bounded. In addition, for a class of homogeneous Cantor sets, we find an explicit formula for their multifractal Hausdorff and packing function dimensions and discuss some interesting examples.
引用
收藏
页码:3949 / 3969
页数:21
相关论文
共 50 条
  • [21] Multifractal spectra of Moran measures without local dimension
    Yuan, Zhihui
    NONLINEARITY, 2019, 32 (12) : 5060 - 5086
  • [22] The refined multifractal formalism of some homogeneous Moran measures
    Douzi, Zied
    Selmi, Bilel
    Ben Mabrouk, Anouar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3815 - 3834
  • [23] The refined multifractal formalism of some homogeneous Moran measures
    Zied Douzi
    Bilel Selmi
    Anouar Ben Mabrouk
    The European Physical Journal Special Topics, 2021, 230 : 3815 - 3834
  • [24] General multifractal dimensions of measures
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2025, 499
  • [25] Multifractal dimensions of product measures
    Olsen, L
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 709 - 734
  • [26] Multifractal Dimensions for Projections of Measures
    Selmi, Bilel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [27] HAUSDORFF MEASURES OF A CLASS OF MORAN SETS
    Jiang, Xiaofang
    Liu, Qinghui
    Wang, Guizhen
    Wen, Zhiying
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (03)
  • [28] LOWER TYPE DIMENSIONS OF SOME MORAN SETS
    Yang, Jiaojiao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (05)
  • [29] Assouad dimensions of Moran sets and Cantor-like sets
    Wenwen Li
    Wenxia Li
    Junjie Miao
    Lifeng Xi
    Frontiers of Mathematics in China, 2016, 11 : 705 - 722
  • [30] PACKING DIMENSIONS OF GENERALIZED RANDOM MORAN SETS
    Tong, Xin
    Yu, Yue-Li
    Zhao, Xiao-Jun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1075 - 1088