Multifractal dimensions of product measures

被引:25
|
作者
Olsen, L
机构
[1] University of St. Andrews, Department of Mathematics, North Haugh, St. Andrews
关键词
D O I
10.1017/S0305004100001675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multifractal structure of product measures. For a Borel probability measure mu and q, t is an element of R, let H-mu(q,t) and P-mu(q,t) denote the multifractal Hausdorff measure and the multifractal packing measure introduced in [011] Let mu be a Borel probability merasure on R(k) and let v be a Borel probability measure on R(l). Fix q, s, t is an element of R. We prove that there exists a number c > 0 such that integral H-mu(q,s) (H-y) dH(nu)(q,t) (y) less than or equal to cH(mu x nu)(q, s+t) (H), H-mu x nu(q, s+t) (E x F) less than or equal to cH(mu)(q,s) (E) P-nu(q,t) (F), integral H-mu(q,s) (H-y) dP(nu)(q,t) (y) less than or equal to cP(mu x nu)(q, s+t) (H), P-mu x nu(q, s+t) (E x F) less than or equal to cP(mu)(q, s) (E) P-nu(q, t) (F), for E subset of or equal to R(k), F subset of or equal to R(l) and H subset of or equal to H subset of or equal to R(k+l) provided that mu and nu satisfy the so-called Pederer condition. Using these inequalities we give upper and lower bounds for the multifractal spectrum of mu + nu in terms of the multifractal spectra of mu and nu.
引用
收藏
页码:709 / 734
页数:26
相关论文
共 50 条
  • [1] General multifractal dimensions of measures
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2025, 499
  • [2] Multifractal Dimensions for Projections of Measures
    Selmi, Bilel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [3] Typical multifractal box dimensions of measures
    Olsen, L.
    FUNDAMENTA MATHEMATICAE, 2011, 211 (03) : 245 - 266
  • [4] Fractal and Multifractal Dimensions of Prevalent Measures
    Olsen, L.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 661 - 690
  • [5] The multifractal box dimensions of typical measures
    Bayart, Frederic
    FUNDAMENTA MATHEMATICAE, 2012, 219 (02) : 145 - 162
  • [6] On the multifractal measures: proportionality and dimensions of Moran sets
    Bilel Selmi
    Zhihui Yuan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3949 - 3969
  • [7] On the multifractal measures and dimensions of image measures on a class of Moran sets
    Attia N.
    Selmi B.
    Chaos, Solitons and Fractals, 2023, 174
  • [8] On the multifractal measures: proportionality and dimensions of Moran sets
    Selmi, Bilel
    Yuan, Zhihui
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3949 - 3969
  • [9] NOTE ON THE MULTIFRACTAL MEASURES OF CARTESIAN PRODUCT SETS
    Attia, Najmeddine
    Guedri, Rihab
    Guizani, Omrane
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (04): : 1073 - 1097
  • [10] An exact computation for mixed multifractal dimensions of sets and measures
    Arfaoui, Sabrine
    Ben Mabrouk, Anouar
    FILOMAT, 2023, 37 (23) : 7761 - 7769