Heat transfer and energy performance analysis of photovoltaic thermal system using functionalized carbon nanotubes enhanced phase change material

被引:14
|
作者
Rajamony, Reji Kumar [1 ,2 ]
Pandey, A. K. [3 ,4 ,9 ]
Samykano, M. [5 ]
Paw, Johnny Koh Siaw [1 ]
Kareri, Tareq [6 ]
Laghari, Imtiaz Ali [7 ]
Tyagi, V. V. [8 ]
机构
[1] Natl Energy Univ, Univ Tenaga Nas, Inst Sustainable Energy, Jalan Ikram Uniten, Kajang 43000, Selangor, Malaysia
[2] Lovely Profess Univ, Div Res & Dev, Phagwara 144411, Punjab, India
[3] Sunway Univ, Res Ctr Nanomat & Energy Technol RCNMET, Sch Engn & Technol, 5 Jalan Univ, Petaling Jaya 47500, Selangor Darul, Malaysia
[4] Saveetha Univ, Saveetha Inst Med & Tech Sci, Ctr Transdisciplinary Res CFTR, Chennai, India
[5] Univ Malaysia Pahang Al Sultan Abdullah, Fac Mech & Automot Engn Technol, Pekan 26600, Pahang, Malaysia
[6] Najran Univ, Coll Engn, Dept Elect Engn, Najran 11001, Saudi Arabia
[7] Quaid e Awam Univ Engn Sci & Technol, Dept Elect Engn, Larkana 77150, Pakistan
[8] Shri Mata Vaishno Devi Univ, Sch Energy Management, Katra 182320, J&K, India
[9] Uttaranchal Univ, CoE Energy & Ecosustainabil Res, Dehra Dun, India
关键词
Phase change materials; Functionalized multi-walled carbon nanotubes; Photovoltaic thermal systems; Electrical power; Heat gain; EXERGY ANALYSIS; PV/T SYSTEM; PVT; NANOFLUID; RADIATION; PANELS;
D O I
10.1016/j.applthermaleng.2024.122544
中图分类号
O414.1 [热力学];
学科分类号
摘要
The photovoltaic thermal system (PVT) is an emerging technology that simultaneously generates both electrical and thermal energy from solar energy, aiming to improve solar energy utilization. However, significant technological issues with these systems obstruct their large-scale operation. The major drawback of the cooling fluidbased PVT systems lies in operation during sun-shine hours only. To address this issue, the present research endeavors a comparative study on with and without nano-enhanced phase change materials (NePCM) integrated PVT system. In this study, the performance evaluation of four configurations was analyzed with a flow rate varying from 0.4 to 0.8 litter per minute. From this, the experimental analysis was performed on two systems, including a photovoltaic and a PVT system. The simulation was performed using TRNSYS simulation on the phase change materials integrated photovoltaic thermal system, and NePCM integrated photovoltaic thermal system. The results indicates that increasing the flow rate by 2.2 times leads to a 4.9 -fold increase in pressure drop, while the friction factor decreases with rising mass flow rate. Notably, the NePCM-integrated PVT system exhibited a substantial reduction in cell temperature and increased electrical power output at higher flow rates. At a flow rate of 0.4litter per minute, a significant heat gain was achieved with an impressive energy-saving efficiency of 75.67 %. Furthermore, the total efficiency of the PVT system, phase change materials integrated PVT system, and NePCM integrated PVT system were determined to be 81.9 %, 84.5 %, and 85.05 %, respectively. These findings underscore the potential of NePCM-integrated PVT systems for enhancing performance and expanding their practical application.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Analysis and performance prediction of a building integrated photovoltaic thermal system with and without phase change material
    Alsagri, Ali Sulaiman
    Alrobaian, Abdulrahman A.
    ENERGY, 2024, 310
  • [22] Heat transfer enhancement in thermal energy storage using phase change material by optimal arrangement
    Huo, Yutao
    Pang, Xiaowen
    Rao, Zhonghao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 161
  • [23] Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis
    Elmozughi, Ali F.
    Solomon, Laura
    Oztekin, Alparslan
    Neti, Sudhakar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 : 1135 - 1144
  • [24] EXPERIMENTAL STUDY OF ENHANCED HEAT TRANSFER IN PHASE CHANGE MATERIAL BASED THERMAL ENERGY STORAGE IN COMPACT HEAT EXCHANGERS
    Kannan, Sarath
    Jog, Milind A.
    Manglik, Raj M.
    PROCEEDINGS OF ASME 2023 HEAT TRANSFER SUMMER CONFERENCE, HT2023, 2023,
  • [25] On Numerical Modeling of Thermal Performance Enhancementof a Heat Thermal Energy Storage System Using a Phase Change Material and a Porous Foam
    Mabrouk, Riheb
    Naji, Hassane
    Dhahri, Hacen
    Younsi, Zouhir
    COMPUTATION, 2022, 10 (01)
  • [26] Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes
    Karaipekli, Ali
    Bicer, Alper
    Sari, Ahmet
    Tyagi, Vineet Veer
    ENERGY CONVERSION AND MANAGEMENT, 2017, 134 : 373 - 381
  • [27] Thermal performance evaluation of an integrated photovoltaic thermal-phase change material system using Taguchi method
    Ren, Haoshan
    Lin, Wenye
    Ma, Zhenjun
    Fan, Wenke
    IMPROVING RESIDENTIAL ENERGY EFFICIENCY INTERNATIONAL CONFERENCE, IREE 2017, 2017, 121 : 118 - 125
  • [28] Global analysis of photovoltaic energy output enhanced by phase change material cooling
    Smith, Christopher J.
    Forster, Piers M.
    Crook, Rolf
    APPLIED ENERGY, 2014, 126 : 21 - 28
  • [29] Photovoltaic and thermal performance of solar PV/T system with phase change material
    Zhang C.
    Wang N.
    Xu H.
    Zhang J.
    Cao M.
    Talkhoncheh F.K.
    Huagong Xuebao/CIESC Journal, 2020, 71 : 361 - 367
  • [30] Thermal performance of a novel heat transfer fluid containing multiwalled carbon nanotubes and microencapsulated phase change materials
    Tumuluri, Kalpana
    Alvarado, Jorge L.
    Taherian, Hessam
    Marsh, Charles
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (25-26) : 5554 - 5567