Robust Least Squares Regression for Subspace Clustering: A Multi-View Clustering Perspective

被引:5
|
作者
Du, Yangfan [1 ]
Lu, Gui-Fu [1 ]
Ji, Guangyan [1 ]
机构
[1] Anhui Polytech Univ, Sch Comp Sci & Informat, Wuhu 241000, Anhui, Peoples R China
关键词
Affinity matrix; least squares regression; subspace clustering; tensor; ALGORITHM;
D O I
10.1109/TIP.2023.3327564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, with the assumption that samples can be reconstructed by themselves, subspace clustering (SC) methods have achieved great success. Generally, SC methods contain some parameters to be tuned, and different affinity matrices can obtain with different parameter values. In this paper, for the first time, we study a method for fusing these different affinity matrices to promote clustering performance and provide the corresponding solution from a multi-view clustering (MVC) perspective. That is, we argue that the different affinity matrices are consistent and complementary, which is similar to the fundamental assumption of MVC methods. Based on this observation, in this paper, we use least squares regression (LSR), which is a typical SC method, as an example since it can be efficiently optimized and has shown good clustering performance and we propose a novel robust least squares regression method from an MVC perspective (RLSR/MVCP). Specifically, we first utilize LSR with different parameter values to obtain different affinity matrices. Then, to fully explore the information contained in these different affinity matrices and to remove noise, we further fuse these affinity matrices into a tensor, which is constrained by the tensor low-rank constraint, i.e., the tensor nuclear norm (TNN). The two steps are combined into a framework that is solved by the augmented Lagrange multiplier (ALM) method. The experimental results on several datasets indicate that RLSR/MVCP has very encouraging clustering performance and is superior to state-of-the-art SC methods.
引用
收藏
页码:216 / 227
页数:12
相关论文
共 50 条
  • [41] Locality-constrained least squares regression for subspace clustering
    Chen, Yuanyuan
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 51 - 56
  • [42] Clean and robust multi-level subspace representations learning for deep multi-view subspace clustering
    Xu, Kaiqiang
    Tang, Kewei
    Su, Zhixun
    Tan, Hongchen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [43] Robust multi-view subspace clustering based on consensus representation and orthogonal diversity
    Zhao, Nan
    Bu, Jie
    NEURAL NETWORKS, 2022, 150 : 102 - 111
  • [44] Confidence level auto-weighting robust multi-view subspace clustering
    Zhang, Xiaoqian
    Wang, Jing
    Xue, Xuqian
    Sun, Huaijiang
    Zhang, Jiangmei
    NEUROCOMPUTING, 2022, 475 : 38 - 52
  • [45] Robust multi-view subspace clustering with missing data by aligning nonlinear manifolds
    Mao, Zhan-Wang
    Sun, Lu
    Wu, Youlong
    PATTERN RECOGNITION, 2025, 161
  • [46] Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
    Zhuge, Wenzhang
    Hou, Chenping
    Jiao, Yuanyuan
    Yue, Jia
    Tao, Hong
    Yi, Dongyun
    PLOS ONE, 2017, 12 (05):
  • [47] Deep Multi-View Subspace Clustering with Anchor Graph
    Cui, Chenhang
    Ren, Yazhou
    Pu, Jingyu
    Pu, Xiaorong
    He, Lifang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3577 - 3585
  • [48] Global and Local Consistent Multi-view Subspace Clustering
    Fan, Yanbo
    He, Ran
    Hu, Bao-Gang
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 564 - 568
  • [49] MULTI-VIEW SUBSPACE CLUSTERING WITH LOCAL AND GLOBAL INFORMATION
    Duan, Yi-Qiang
    Yuan, Hao-Liang
    Lai, Loi Lei
    He, Ben
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2021, : 11 - 16
  • [50] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,