MULTI-VIEW SUBSPACE CLUSTERING WITH LOCAL AND GLOBAL INFORMATION

被引:2
|
作者
Duan, Yi-Qiang [1 ]
Yuan, Hao-Liang [1 ]
Lai, Loi Lei [1 ]
He, Ben [2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Self-representation learning; Graph learning;
D O I
10.1109/ICWAPR54887.2021.9736151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering can mine the underlying structure of multi-view data and has attracted increasing attention. Most existing multi-view clustering methods either construct the similarity matrix from the global level through self-representation learning or construct the similarity matrix from the local level through graph learning. Spectral clustering method can be used to yield the clustering results based on the similarity matrix. However, the similarity matrix that only considers global information or local information is not robust. Moreover, separating the similarity matrix learning and clustering as two steps may lead to sub-optimal clustering results. To address these issues, we propose in this paper, a multi-view subspace clustering with local and global information (MVSCLG) method. Our method combines the self-representation learning and graph learning to learn a similarity matrix with global and local information, and simultaneously utilizes the spectral decomposition and the spectral rotation techniques to yield the clustering results. We also develop an effective optimization algorithm to solve the resulting optimization problem. The effectiveness and superiority of this method are verified on four multi-view benchmark data sets.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Multi-view subspace clustering networks with local and global graph information
    Zheng, Qinghai
    Zhu, Jihua
    Ma, Yuanyuan
    Li, Zhongyu
    Tian, Zhiqiang
    NEUROCOMPUTING, 2021, 449 : 15 - 23
  • [2] Global and Local Consistent Multi-view Subspace Clustering
    Fan, Yanbo
    He, Ran
    Hu, Bao-Gang
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 564 - 568
  • [3] Fusing Local and Global Information for One-Step Multi-View Subspace Clustering
    Duan, Yiqiang
    Yuan, Haoliang
    Lai, Chun Sing
    Lai, Loi Lei
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [4] Consistent multi-view subspace clustering with local structure information
    Zhao, Kang
    Zhou, Shuisheng
    Zhang, Ying
    Zhang, Junna
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3495 - 3512
  • [5] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [6] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246
  • [7] Multi-View Fuzzy Classification With Subspace Clustering and Information Granules
    Hu, Xingchen
    Liu, Xinwang
    Pedrycz, Witold
    Liao, Qing
    Shen, Yinghua
    Li, Yan
    Wang, Siwei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11642 - 11655
  • [8] Sequential multi-view subspace clustering
    Lei, Fangyuan
    Li, Qin
    Neural Networks, 2022, 155 : 475 - 486
  • [9] Multi-view subspace text clustering
    Fraj, Maha
    Hajkacem, Mohamed Aymen Ben
    Essoussi, Nadia
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 1583 - 1606
  • [10] Latent Multi-view Subspace Clustering
    Zhang, Changqing
    Hu, Qinghua
    Fu, Huazhu
    Zhu, Pengfei
    Cao, Xiaochun
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4333 - 4341