fractional Hadamard integral equations;
higher-order uniform accurate numerical scheme;
error estimations;
optimal convergence order;
D O I:
10.3934/math.20231523
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for 0 < gamma, lambda < 1, the convergence of the high order numerical scheme has the optimal convergence order of O(triangle(4-gamma)(s )+ triangle(4-lambda)(t)). Finally, two numerical examples are used for experimental testing to support the theoretical findings.
机构:
Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
Beni Suef Univ, Dept Math & Comp Sci, Fac Sci, Bani Suwayf, EgyptImam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
Abdelkawy, Mohamed A.
Mahmoud, Emad E.
论文数: 0引用数: 0
h-index: 0
机构:
Taif Univ, Dept Math & Stat, Coll Sci, At Taif 21944, Saudi ArabiaImam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
Mahmoud, Emad E.
Abualnaja, Kholod M.
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Fac Sci Appl, Dept Math, Mecca, Saudi ArabiaImam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
Abualnaja, Kholod M.
Abdel-Aty, Abdel-Haleem
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, EgyptImam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia