Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations

被引:1
|
作者
Wang, Ziqiang [1 ]
Shi, Kaihao [1 ]
Ye, Xingyang [2 ]
Cao, Junying [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
基金
中国国家自然科学基金;
关键词
fractional Hadamard integral equations; higher-order uniform accurate numerical scheme; error estimations; optimal convergence order;
D O I
10.3934/math.20231523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for 0 < gamma, lambda < 1, the convergence of the high order numerical scheme has the optimal convergence order of O(triangle(4-gamma)(s )+ triangle(4-lambda)(t)). Finally, two numerical examples are used for experimental testing to support the theoretical findings.
引用
收藏
页码:29759 / 29796
页数:38
相关论文
共 50 条
  • [11] Two-dimensional Euler polynomials solutions of two-dimensional Volterra integral equations of fractional order
    Wang, Yifei
    Huang, Jin
    Wen, Xiaoxia
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 (163) : 77 - 95
  • [12] A Novel Higher-Order Numerical Scheme for System of Nonlinear Load Flow Equations
    Zafar, Fiza
    Cordero, Alicia
    Maryam, Husna
    Torregrosa, Juan R.
    ALGORITHMS, 2024, 17 (02)
  • [13] Stability in higher-order nonlinear fractional differential equations
    Ardjouni, Abdelouaheb
    Boulares, Hamid
    Laskri, Yamina
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (01): : 37 - 47
  • [14] A compact scheme for two-dimensional nonlinear time fractional wave equations
    Zhang, Guanghui
    Ren, Min
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (05)
  • [15] CONVERGENCE OF A HIGHER-ORDER VORTEX METHOD FOR TWO-DIMENSIONAL EULER EQUATIONS
    CHIU, C
    NICOLAIDES, RA
    MATHEMATICS OF COMPUTATION, 1988, 51 (184) : 507 - 534
  • [16] Equivalences of Nonlinear Higher Order Fractional Differential Equations With Integral Equations
    Lan, Kunquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6930 - 6942
  • [17] Numerical simulation of fractional-order two-dimensional Helmholtz equations
    Iqbal, Naveed
    Chughtai, Muhammad Tajammal
    Shah, Nehad Ali
    AIMS MATHEMATICS, 2022, 8 (06): : 13205 - 13218
  • [18] Numerical Analysis of a High-Order Scheme for Nonlinear Fractional Differential Equations with Uniform Accuracy
    Cao, Junying
    Cai, Zhenning
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (01): : 71 - 112
  • [19] Positive Solutions for Higher-Order Nonlinear Fractional Differential Equations
    Souahi A.
    Guezane-Lakoud A.
    Hitta A.
    Vietnam Journal of Mathematics, 2017, 45 (3) : 441 - 450
  • [20] A Numerical Method to Solve Higher-Order Fractional Differential Equations
    Ricardo Almeida
    Nuno R. O. Bastos
    Mediterranean Journal of Mathematics, 2016, 13 : 1339 - 1352