Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations

被引:1
|
作者
Wang, Ziqiang [1 ]
Shi, Kaihao [1 ]
Ye, Xingyang [2 ]
Cao, Junying [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
基金
中国国家自然科学基金;
关键词
fractional Hadamard integral equations; higher-order uniform accurate numerical scheme; error estimations; optimal convergence order;
D O I
10.3934/math.20231523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for 0 < gamma, lambda < 1, the convergence of the high order numerical scheme has the optimal convergence order of O(triangle(4-gamma)(s )+ triangle(4-lambda)(t)). Finally, two numerical examples are used for experimental testing to support the theoretical findings.
引用
收藏
页码:29759 / 29796
页数:38
相关论文
共 50 条