A note on finite groups in which every non-nilpotent maximal subgroup has prime index

被引:1
|
作者
Shi, Jiangtao [1 ]
Liu, Wenjing [1 ]
Tian, Yunfeng [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
关键词
Non-nilpotent maximal subgroup; prime index; normal; p-complement;
D O I
10.1142/S0219498824501354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group in which every non-nilpotent maximal subgroup has prime index and p the largest prime divisor of |G|, without using the solvability of G we prove that either the Sylow p-subgroup of G is normal or G has a normal p-complement.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] GROUPS IN WHICH PROPER SUBGROUPS CONTAIN A NILPOTENT SUBGROUP OF FINITE INDEX
    BRUNO, B
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3D (01): : 179 - 188
  • [32] FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS
    Shen, Zhencai
    Shi, Wujie
    Zhang, Jinshan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1147 - 1155
  • [33] Finite groups in which every commutator has prime power order
    Figueiredo, Mateus
    Shumyatsky, Pavel
    JOURNAL OF ALGEBRA, 2024, 658 : 779 - 797
  • [34] On finite groups in which every non-abelian subgroup is a TI-subgroup or has p'-order
    Ren, Huixuan
    Shi, Jiangtao
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 225 - 231
  • [35] Finite Groups in which Every Self-Centralizing Subgroup is Nilpotent or Subnormal or a TI-Subgroup
    Shi, Jiangtao
    Li, Na
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 1229 - 1233
  • [36] Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup
    Jiangtao Shi
    Na Li
    Czechoslovak Mathematical Journal, 2021, 71 : 1229 - 1233
  • [37] Groups in which every element has a paracentralizer of finite index
    De Falco, M.
    Evans, M. J.
    de Giovanni, F.
    Musella, C.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2160 - 2166
  • [38] Finite groups in which every 3-Maximal subgroup commutes with all maximal subgroups
    Wen-Bin Guo
    E. V. Legchekova
    A. N. Skiba
    Mathematical Notes, 2009, 86
  • [39] Finite groups in which every 3-Maximal subgroup commutes with all maximal subgroups
    Guo, Wen-Bin
    Legchekova, E. V.
    Skiba, A. N.
    MATHEMATICAL NOTES, 2009, 86 (3-4) : 325 - 332
  • [40] FINITE NON-NILPOTENT GROUPS WITH SOME PRESET SYSTEMS OF NILPOTENT SUBGROUPS
    LEVISHCHENKO, SS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (01): : 35 - 37