A note on finite groups in which every non-nilpotent maximal subgroup has prime index

被引:1
|
作者
Shi, Jiangtao [1 ]
Liu, Wenjing [1 ]
Tian, Yunfeng [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
关键词
Non-nilpotent maximal subgroup; prime index; normal; p-complement;
D O I
10.1142/S0219498824501354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group in which every non-nilpotent maximal subgroup has prime index and p the largest prime divisor of |G|, without using the solvability of G we prove that either the Sylow p-subgroup of G is normal or G has a normal p-complement.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Groups in which every automorphism centralizes a subgroup of prime index
    Hassanabadi, AM
    Robinson, DJS
    Wiegold, J
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (10) : 3119 - 3136
  • [22] On finite minimal non-nilpotent groups
    Ballester-Bolinches, A
    Esteban-Romero, R
    Robinson, DJS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3455 - 3462
  • [23] On finite groups with non-nilpotent subgroups
    Jiakuan Lu
    Wei Meng
    Monatshefte für Mathematik, 2016, 179 : 99 - 103
  • [24] On finite groups with non-nilpotent subgroups
    Lu, Jiakuan
    Meng, Wei
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (01): : 99 - 103
  • [25] A note on a finite group with all non-nilpotent maximal subgroups being normal
    Li, Na
    Shi, Jiangtao
    Italian Journal of Pure and Applied Mathematics, 2019, (42): : 700 - 702
  • [26] A note on a finite group with all non-nilpotent maximal subgroups being normal
    Li, Na
    Shi, Jiangtao
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 700 - 702
  • [27] MINIMAL NON-NILPOTENT GROUPS WHICH ARE SUPERSOLVABLE
    Russo, Francesco G.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 18 (01): : 79 - 88
  • [28] Finite non-solvable groups in which the normalizer of every nonnormal cyclic subgroup is maximal
    Cao, Jianji
    Guo, Xiuyun
    Shum, K. P.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 325 - 334
  • [29] Finite soluble groups in which the normalizer of every non-normal cyclic subgroup is maximal
    Cao, Jianji
    Guo, Xiuyun
    JOURNAL OF GROUP THEORY, 2014, 17 (04) : 671 - 687
  • [30] Locally finite groups with a nilpotent or locally nilpotent maximal subgroup
    Bruno, B
    Napolitani, F
    JOURNAL OF GROUP THEORY, 1999, 2 (04) : 393 - 399