IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense

被引:50
|
作者
Yumlembam, Rahul [1 ]
Issac, Biju [1 ]
Jacob, Seibu Mary [2 ]
Yang, Longzhi [1 ]
机构
[1] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, England
[2] Teesside Univ, Sch Comp Engn & Digital Technol, Middlesbrough TS1 3BX, England
基金
英国工程与自然科学研究理事会;
关键词
Malware; Internet of Things; Codes; Feature extraction; Detectors; Deep learning; Classification algorithms; Android; deep learning; generative adversarial network (GAN); graph neural network (GNN); Internet of Things (IoT); machine learning;
D O I
10.1109/JIOT.2022.3188583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android graph-based deep learning research has proposed many approaches to extract relationships from the application as a graph to generate graph embeddings. First, we demonstrate the effectiveness of graph-based classification using graph neural networks (GNNs)-based classifier to generate API graph embedding. The graph embedding is used with "Permission" and "Intent" to train multiple machine learning and deep learning algorithms to detect Android malware. The classification achieved an accuracy of 98.33% in CICMaldroid and 98.68% in the Drebin data set. However, the graph-based deep learning is vulnerable as an attacker can add fake relationships to avoid detection by the classifier. Second, we propose a generative adversarial network (GAN)-based algorithm named VGAE-MalGAN to attack the graph-based GNN Android malware classifier. The VGAE-MalGAN generator generates adversarial malware API graphs, and the VGAE-MalGAN substitute detector (SD) tries to fit the detector. Experimental analysis shows that VGAE-MalGAN can effectively reduce the detection rate of GNN malware classifiers. Although the model fails to detect adversarial malware, experimental analysis shows that retraining the model with generated adversarial samples helps to combat adversarial attacks.
引用
收藏
页码:8432 / 8444
页数:13
相关论文
共 50 条
  • [41] Interpretable Automatic Detection of Android Malware Based on Graph Embedding
    Wang, Yulian
    Lu, Mingming
    Computer Engineering and Applications, 2024, 57 (23) : 122 - 128
  • [42] Structural Attack against Graph Based Android Malware Detection
    Zhao, Kaifa
    Zhou, Hao
    Zhu, Yulin
    Zhan, Xian
    Zhou, Kai
    Li, Jianfeng
    Yu, Le
    Yuan, Wei
    Luo, Xiapu
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 3218 - 3235
  • [43] Android Malware Detection Based on Convolutional Neural Networks
    Wang, Zhiqiang
    Li, Gefei
    Chi, Yaping
    Zhang, Jianyi
    Yang, Tao
    Liu, Qixu
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [44] Obfuscation-resilient Android Malware Detection Based on Graph Convolution Neural Networks.
    Wu Y.-M.
    Qi M.
    Zou D.-Q.
    Jin H.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (06): : 2526 - 2542
  • [45] SOMDROID: android malware detection by artificial neural network trained using unsupervised learning
    Mahindru, Arvind
    Sangal, A. L.
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (01) : 407 - 437
  • [46] αCyber: Enhancing Robustness of Android Malware Detection System against Adversarial Attacks on Heterogeneous Graph based Model
    Hou, Shifu
    Fan, Yujie
    Zhang, Yiming
    Ye, Yanfang
    Lei, Jingwei
    Wan, Wenqiang
    Wang, Jiabin
    Xiong, Qi
    Shao, Fudong
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 609 - 618
  • [47] SOMDROID: android malware detection by artificial neural network trained using unsupervised learning
    Arvind Mahindru
    A. L. Sangal
    Evolutionary Intelligence, 2022, 15 : 407 - 437
  • [48] HGDetector: A hybrid Android malware detection method using network traffic and Function call graph
    Feng, Jiayin
    Shen, Limin
    Chen, Zhen
    Lei, Yu
    Li, Hui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 30 - 45
  • [49] A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling
    Turnbull, Leigh
    Tan, Zhiyuan
    Babaagba, Kehinde O.
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [50] DawnGNN: Documentation augmented windows malware detection using graph neural network
    Feng, Pengbin
    Gai, Le
    Yang, Li
    Wang, Qin
    Li, Teng
    Xi, Ning
    Ma, Jianfeng
    COMPUTERS & SECURITY, 2024, 140