IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense

被引:50
|
作者
Yumlembam, Rahul [1 ]
Issac, Biju [1 ]
Jacob, Seibu Mary [2 ]
Yang, Longzhi [1 ]
机构
[1] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, England
[2] Teesside Univ, Sch Comp Engn & Digital Technol, Middlesbrough TS1 3BX, England
基金
英国工程与自然科学研究理事会;
关键词
Malware; Internet of Things; Codes; Feature extraction; Detectors; Deep learning; Classification algorithms; Android; deep learning; generative adversarial network (GAN); graph neural network (GNN); Internet of Things (IoT); machine learning;
D O I
10.1109/JIOT.2022.3188583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since the Internet of Things (IoT) is widely adopted using Android applications, detecting malicious Android apps is essential. In recent years, Android graph-based deep learning research has proposed many approaches to extract relationships from the application as a graph to generate graph embeddings. First, we demonstrate the effectiveness of graph-based classification using graph neural networks (GNNs)-based classifier to generate API graph embedding. The graph embedding is used with "Permission" and "Intent" to train multiple machine learning and deep learning algorithms to detect Android malware. The classification achieved an accuracy of 98.33% in CICMaldroid and 98.68% in the Drebin data set. However, the graph-based deep learning is vulnerable as an attacker can add fake relationships to avoid detection by the classifier. Second, we propose a generative adversarial network (GAN)-based algorithm named VGAE-MalGAN to attack the graph-based GNN Android malware classifier. The VGAE-MalGAN generator generates adversarial malware API graphs, and the VGAE-MalGAN substitute detector (SD) tries to fit the detector. Experimental analysis shows that VGAE-MalGAN can effectively reduce the detection rate of GNN malware classifiers. Although the model fails to detect adversarial malware, experimental analysis shows that retraining the model with generated adversarial samples helps to combat adversarial attacks.
引用
收藏
页码:8432 / 8444
页数:13
相关论文
共 50 条
  • [31] DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network
    Kabakus, Abdullah Talha
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [32] Deep malware detection framework for IoT-based smart agriculture
    Smmarwar, Santosh K.
    Gupta, Govind P.
    Kumar, Sanjay
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [33] Malware Detection in Android IoT Systems Using Deep Learning
    Waqar, Muhammad
    Fareed, Sabeeh
    Kim, Ajung
    Malik, Saif Ur Rehman
    Imran, Muhammad
    Yaseen, Muhammad Usman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 4399 - 4415
  • [34] Detection of clone scammers in Android markets using IoT-based edge computing
    Ullah, Farhan
    Naeem, Hamad
    Naeem, Muhammad Rashid
    Jabbar, Sohail
    Khalid, Shehazad
    Al-Turjman, Fadi
    Abuarqoub, Abdelrahman
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (06)
  • [35] NT-GNN: Network Traffic Graph for 5G Mobile IoT Android Malware Detection
    Liu, Tianyue
    Li, Zhenwan
    Long, Haixia
    Bilal, Anas
    ELECTRONICS, 2023, 12 (04)
  • [36] A new adversarial malware detection method based on enhanced lightweight neural network
    Gao, Caixia
    Du, Yao
    Ma, Fan
    Lan, Qiuyan
    Chen, Jianying
    Wu, Jingjing
    COMPUTERS & SECURITY, 2024, 147
  • [37] AAGAN: Android Malware Generation System Based on Generative Adversarial Network
    Trung, Doan Minh
    Khoa, Nghi Hoang
    Duy, Phan The
    Pham, Van-Hau
    Cam, Nguyen Tan
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2024, 11 (02) : 275 - 299
  • [38] Android Malware Detection Based on Hypergraph Neural Networks
    Zhang, Dehua
    Wu, Xiangbo
    He, Erlu
    Guo, Xiaobo
    Yang, Xiaopeng
    Li, Ruibo
    Li, Hao
    Vaccaro, Ugo
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [39] Towards Robust Android Malware Detection Models using Adversarial Learning
    Rathore, Hemant
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 424 - 425
  • [40] Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection
    Chen, Yi-Ming
    Yang, Chun-Hsien
    Chen, Guo-Chung
    2021 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2021,