General upper bounds for the numerical radius on complex Hilbert space

被引:1
|
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
Numerical radius; Off-diagonal part; Operator matrix; INEQUALITIES;
D O I
10.47974/JIM-1512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that if {A(i)}(i-1)(m) i and{X-i}(i-1)(m) are two sets of bounded linear operators on the complex Hilbert space H, then for every n is an element of N and m> 2, we have w(A(1)(n-1) (Sigma(m-1)(i=0) A(m-i) Xm-i A(i+1)(*))(A(1)(*))(n-1)) <= parallel to A(1)parallel to(2n-2) (2 parallel to A(1) parallel to parallel to A(m) parallel to + Sigma(m-1)(j=2)parallel to A(j) parallel to(2)) w(E) and w(A(1)(n-1) A(2) X-2 (A(1)(*))(n) +/- A(1)(n)X(1)A(2)(*) (A(1)*)(n-1)) = 2 parallel to A(1)parallel to(2n-1) parallel to A(2)parallel to w(left perpendicular (X2) (0) (X1) (0) right perpendicular), where w(.) is the numerical radius and E= [(Xm) (0) ... (0) (X1)]. This provides an improvement of Theorem 3 by Fong and Holbrook [3] and a generalization of Theorem 3 by Hirzallah et al. [6]. Moreover, we provide some new upper bounds for the numerical radius of off-diagonal operator matrices and provide a generalization of the main result by Abu-Omar and Kittaneh [17].
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [31] Upper bounds for the spectral radius of the n x n Hilbert matrix
    Otte, P
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 219 (02) : 323 - 331
  • [32] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [33] Norm and numerical radius inequalities for Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1393 - 1400
  • [34] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 114 - 128
  • [35] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [36] AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    Moradi, Hamid Reza
    MATHEMATICA SLOVACA, 2020, 70 (01) : 233 - 237
  • [37] NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS OF HILBERT SPACE OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    JOURNAL OF OPERATOR THEORY, 2014, 72 (02) : 521 - 527
  • [38] THE NUMERICAL RADIUS OF A NILPOTENT OPERATOR ON A HILBERT-SPACE
    HAAGERUP, U
    DELAHARPE, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (02) : 371 - 379
  • [39] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wójcik, Pawel
    Linear Algebra and Its Applications, 2022, 609 : 114 - 128
  • [40] q-Numerical radius inequalities for Hilbert space
    Moghaddam, Sadaf Fakhri
    Mirmostafaee, Alireza Kamel
    Janfada, Mohammad
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (05): : 751 - 763