General upper bounds for the numerical radius on complex Hilbert space

被引:1
|
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
Numerical radius; Off-diagonal part; Operator matrix; INEQUALITIES;
D O I
10.47974/JIM-1512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that if {A(i)}(i-1)(m) i and{X-i}(i-1)(m) are two sets of bounded linear operators on the complex Hilbert space H, then for every n is an element of N and m> 2, we have w(A(1)(n-1) (Sigma(m-1)(i=0) A(m-i) Xm-i A(i+1)(*))(A(1)(*))(n-1)) <= parallel to A(1)parallel to(2n-2) (2 parallel to A(1) parallel to parallel to A(m) parallel to + Sigma(m-1)(j=2)parallel to A(j) parallel to(2)) w(E) and w(A(1)(n-1) A(2) X-2 (A(1)(*))(n) +/- A(1)(n)X(1)A(2)(*) (A(1)*)(n-1)) = 2 parallel to A(1)parallel to(2n-1) parallel to A(2)parallel to w(left perpendicular (X2) (0) (X1) (0) right perpendicular), where w(.) is the numerical radius and E= [(Xm) (0) ... (0) (X1)]. This provides an improvement of Theorem 3 by Fong and Holbrook [3] and a generalization of Theorem 3 by Hirzallah et al. [6]. Moreover, we provide some new upper bounds for the numerical radius of off-diagonal operator matrices and provide a generalization of the main result by Abu-Omar and Kittaneh [17].
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [21] On some new upper bounds for numerical radius
    Bilal, Rimsha
    Hyder, Javariya
    Akram, Muhammad Saeed
    Dragomir, Silvestru Sever
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,
  • [22] SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Yang, Chaojun
    Xu, Minghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 269 - 282
  • [23] Numerical Radius Parallelism of Hilbert Space Operators
    Marzieh Mehrazin
    Maryam Amyari
    Ali Zamani
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 821 - 829
  • [24] Numerical Radius Inequalities for Hilbert Space Operators
    Alomari, Mohammad W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [25] On the numerical radius of the product of Hilbert space operators
    Kittaneh, Fuad
    Moradi, Hamid Reza
    Sababheh, Mohammad
    HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (03) : 395 - 420
  • [26] Numerical Radius Parallelism of Hilbert Space Operators
    Mehrazin, Marzieh
    Amyari, Maryam
    Zamani, Ali
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (03) : 821 - 829
  • [27] NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Al-Dolat, Mohammed
    Al-Zoubi, Khaldoun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1041 - 1049
  • [28] Numerical radius inequalities for Hilbert space operators
    Kittaneh, F
    STUDIA MATHEMATICA, 2005, 168 (01) : 73 - 80
  • [29] Numerical Radius Inequalities for Hilbert Space Operators
    Mohammad W. Alomari
    Complex Analysis and Operator Theory, 2021, 15
  • [30] On upper and lower bounds of the numerical radius and an equality condition
    Yamazaki, Takeaki
    STUDIA MATHEMATICA, 2007, 178 (01) : 83 - 89