General upper bounds for the numerical radius on complex Hilbert space

被引:1
|
作者
Al-Dolat, Mohammed [1 ]
Al-Zoubi, Khaldoun [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
Numerical radius; Off-diagonal part; Operator matrix; INEQUALITIES;
D O I
10.47974/JIM-1512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that if {A(i)}(i-1)(m) i and{X-i}(i-1)(m) are two sets of bounded linear operators on the complex Hilbert space H, then for every n is an element of N and m> 2, we have w(A(1)(n-1) (Sigma(m-1)(i=0) A(m-i) Xm-i A(i+1)(*))(A(1)(*))(n-1)) <= parallel to A(1)parallel to(2n-2) (2 parallel to A(1) parallel to parallel to A(m) parallel to + Sigma(m-1)(j=2)parallel to A(j) parallel to(2)) w(E) and w(A(1)(n-1) A(2) X-2 (A(1)(*))(n) +/- A(1)(n)X(1)A(2)(*) (A(1)*)(n-1)) = 2 parallel to A(1)parallel to(2n-1) parallel to A(2)parallel to w(left perpendicular (X2) (0) (X1) (0) right perpendicular), where w(.) is the numerical radius and E= [(Xm) (0) ... (0) (X1)]. This provides an improvement of Theorem 3 by Fong and Holbrook [3] and a generalization of Theorem 3 by Hirzallah et al. [6]. Moreover, we provide some new upper bounds for the numerical radius of off-diagonal operator matrices and provide a generalization of the main result by Abu-Omar and Kittaneh [17].
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [1] Upper bounds for the numerical radius of Hilbert space operators
    Akram Mansoori
    Mohsen Erfanian Omidvar
    Khalid Shebrawi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1473 - 1481
  • [2] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [3] Upper bounds for the numerical radius of Hilbert space operators
    Mansoori, Akram
    Omidvar, Mohsen Erfanian
    Shebrawi, Khalid
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1473 - 1481
  • [4] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [5] New upper bounds for the numerical radius of operators on Hilbert spaces
    Satyajit Sahoo
    Nirmal Chandra Rout
    Advances in Operator Theory, 2022, 7
  • [6] New upper bounds for the numerical radius of operators on Hilbert spaces
    Sahoo, Satyajit
    Rout, Nirmal Chandra
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [7] Some Upper Bounds for the Davis–Wielandt Radius of Hilbert Space Operators
    Ali Zamani
    Khalid Shebrawi
    Mediterranean Journal of Mathematics, 2020, 17
  • [8] A CHAIN OF NUMERICAL RADIUS INEQUALITIES IN COMPLEX HILBERT SPACE
    Al-Dolat, Mohammed
    Dagher, Ayat
    Alquran, Marwan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1155 - 1171
  • [9] Bounds for zeros of a polynomial using numerical radius of Hilbert space operators
    Pintu Bhunia
    Santanu Bag
    Kallol Paul
    Annals of Functional Analysis, 2021, 12
  • [10] Refining the upper bound for the numerical radius of Hilbert space operators
    Heydarbeygi, Zahra
    Khorasani, Mohammad Ali Shiran
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)