Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis

被引:6
|
作者
Liu, Zengxin [1 ,2 ]
Ma, Caiwen [1 ]
She, Wenji [1 ]
Xie, Meilin [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 101408, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 02期
关键词
biomedical image segmentation; Denoising Diffusion Probabilistic Models; probabilistic generative model; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; ALGORITHM; ENTROPY; CANCER;
D O I
10.3390/app14020632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomedical image segmentation plays a pivotal role in medical imaging, facilitating precise identification and delineation of anatomical structures and abnormalities. This review explores the application of the Denoising Diffusion Probabilistic Model (DDPM) in the realm of biomedical image segmentation. DDPM, a probabilistic generative model, has demonstrated promise in capturing complex data distributions and reducing noise in various domains. In this context, the review provides an in-depth examination of the present status, obstacles, and future prospects in the application of biomedical image segmentation techniques. It addresses challenges associated with the uncertainty and variability in imaging data analyzing commonalities based on probabilistic methods. The paper concludes with insights into the potential impact of DDPM on advancing medical imaging techniques and fostering reliable segmentation results in clinical applications. This comprehensive review aims to provide researchers, practitioners, and healthcare professionals with a nuanced understanding of the current state, challenges, and future prospects of utilizing DDPM in the context of biomedical image segmentation.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Biomedical image segmentation using geometric deformable models and metaheuristics
    Mesejo, Pablo
    Valsecchi, Andrea
    Marrakchi-Kacem, Linda
    Cagnoni, Stefano
    Damas, Sergio
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 167 - 178
  • [32] Ambiguous Medical Image Segmentation using Diffusion Models
    Rahman, Aimon
    Valanarasu, Jeya Maria Jose
    Hacihaliloglu, Ilker
    Patel, Vishal M.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11536 - 11546
  • [33] Enhanced conformational space exploration for biomolecules using denoising diffusion probabilistic models
    Benayad, Zakarya
    Stirnemann, Guillaume
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 296A - 297A
  • [34] Predicting the Radiation Field of Molecular Clouds Using Denoising Diffusion Probabilistic Models
    Xu, Duo
    Offner, Stella S. R.
    Gutermuth, Robert
    Grudic, Michael Y.
    Guszejnov, David
    Hopkins, Philip F.
    ASTROPHYSICAL JOURNAL, 2023, 958 (01):
  • [35] AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise
    Wyatt, Julian
    Leach, Adam
    Schmon, Sebastian M.
    Willcocks, Chris G.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 649 - 655
  • [36] Star-Shaped Denoising Diffusion Probabilistic Models
    Okhotin, Andrey
    Molchanov, Dmitry
    Arkhipkin, Vladimir
    Bartosh, Grigory
    Ohanesian, Viktor
    Alanov, Aibek
    Vetrov, Dmitry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] BEDiff: denoising diffusion probabilistic models for building extraction
    Lei, Yanjing
    Wang, Yuan
    Chan, Sixian
    Hu, Jie
    Zhou, Xiaolong
    Zhang, Hongkai
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 298 - 305
  • [38] Denoising diffusion probabilistic models for generative alloy design☆
    Fernandez-Zelaia, Patxi
    Thapliyal, Saket
    Kannan, Rangasayee
    Nandwana, Peeyush
    Yamamoto, Yukinori
    Nycz, Andrzej
    Paquit, Vincent
    Kirka, Michael M.
    ADDITIVE MANUFACTURING, 2024, 94
  • [39] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
    Choi, Jooyoung
    Kim, Sungwon
    Jeong, Yonghyun
    Gwon, Youngjune
    Yoon, Sungroh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14347 - 14356
  • [40] BEDiff: denoising diffusion probabilistic models for building extraction
    LEI Yanjing
    WANG Yuan
    CHAN Sixian
    HU Jie
    ZHOU Xiaolong
    ZHANG Hongkai
    Optoelectronics Letters, 2025, 21 (05) : 298 - 305