Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis

被引:6
|
作者
Liu, Zengxin [1 ,2 ]
Ma, Caiwen [1 ]
She, Wenji [1 ]
Xie, Meilin [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 101408, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 02期
关键词
biomedical image segmentation; Denoising Diffusion Probabilistic Models; probabilistic generative model; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; ALGORITHM; ENTROPY; CANCER;
D O I
10.3390/app14020632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomedical image segmentation plays a pivotal role in medical imaging, facilitating precise identification and delineation of anatomical structures and abnormalities. This review explores the application of the Denoising Diffusion Probabilistic Model (DDPM) in the realm of biomedical image segmentation. DDPM, a probabilistic generative model, has demonstrated promise in capturing complex data distributions and reducing noise in various domains. In this context, the review provides an in-depth examination of the present status, obstacles, and future prospects in the application of biomedical image segmentation techniques. It addresses challenges associated with the uncertainty and variability in imaging data analyzing commonalities based on probabilistic methods. The paper concludes with insights into the potential impact of DDPM on advancing medical imaging techniques and fostering reliable segmentation results in clinical applications. This comprehensive review aims to provide researchers, practitioners, and healthcare professionals with a nuanced understanding of the current state, challenges, and future prospects of utilizing DDPM in the context of biomedical image segmentation.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [22] An Improved Face Image Restoration Method Based on Denoising Diffusion Probabilistic Models
    Pang, Yun
    Mao, Jiawei
    He, Libo
    Lin, Hong
    Qiang, Zhenping
    IEEE ACCESS, 2024, 12 : 3581 - 3596
  • [23] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    Scientific Reports, 13 (1)
  • [24] Probabilistic Diffusion for Interactive Image Segmentation
    Wang, Tao
    Yang, Jian
    Ji, Zexuan
    Sun, Quansen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 330 - 342
  • [25] Speech-to-Face Conversion Using Denoising Diffusion Probabilistic Models
    Kato, Shuhei
    Hashimoto, Taiichi
    INTERSPEECH 2023, 2023, : 2188 - 2192
  • [26] Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models
    Asgariandehkordi, Hojat
    Goudarzi, Sobhan
    Sharifzadeh, Mostafa
    Basarab, Adrian
    Rivaz, Hassan
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2024, 71 (11) : 1526 - 1539
  • [27] Image denoising and segmentation via nonlinear diffusion
    Chen, YM
    Vemuri, BC
    Wang, L
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (5-6) : 131 - 149
  • [28] Editorial on Special Issue on Probabilistic Models for Biomedical Image Analysis
    Arbel, Tal
    Cardoso, M. Jorge
    Wells, William, III
    Chung, Albert C. S.
    Precup, Doina
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 1 - 2
  • [29] Image denoising and detail preservation by probabilistic models
    Liu, TW
    Zhou, HY
    Lin, FQ
    Pang, YS
    Wu, J
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 285 - 290
  • [30] Ultrasonic characterization of defects in polycrystalline materials based on TFM image reconstruction using denoising diffusion probabilistic models
    Guo, Changrong
    Ding, Yue
    Cui, Hua
    Xu, Jianfeng
    Bai, Long
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224