WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection

被引:59
|
作者
Zhou, Wujie [1 ]
Sun, Fan [1 ,2 ]
Jiang, Qiuping [3 ]
Cong, Runmin [4 ]
Hwang, Jenq-Neng [5 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 308232, Singapore
[3] Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
[4] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[5] Univ Washington, Dept Elect Engn, Seattle, WA 98105 USA
基金
中国国家自然科学基金;
关键词
Transformers; Feature extraction; Discrete wavelet transforms; Training; Knowledge engineering; Cross layer design; Convolutional neural networks; Wavelet; knowledge distillation; discrete wavelet transform; progressively stretched sine-cosine module; edge-aware module; FUSION; IMAGE;
D O I
10.1109/TIP.2023.3275538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, various neural network architectures for computer vision have been devised, such as the visual transformer and multilayer perceptron (MLP). A transformer based on an attention mechanism can outperform a traditional convolutional neural network. Compared with the convolutional neural network and transformer, the MLP introduces less inductive bias and achieves stronger generalization. In addition, a transformer shows an exponential increase in the inference, training, and debugging times. Considering a wave function representation, we propose the WaveNet architecture that adopts a novel vision task-oriented wavelet-based MLP for feature extraction to perform salient object detection in RGB (red-green-blue)-thermal infrared images. In addition, we apply knowledge distillation to a transformer as an advanced teacher network to acquire rich semantic and geometric information and guide WaveNet learning with this information. Following the shortestpath concept, we adopt the Kullback-Leibler distance as a regularization term for the RGB features to be as similar to the thermal infrared features as possible. The discrete wavelet transform allows for the examination of frequency-domain features in a local time domain and time-domain features in a local frequency domain. We apply this representation ability to perform cross-modality feature fusion. Specifically, we introduce a progressively cascaded sine-cosine module for cross-layer feature fusion and use low-level features to obtain clear boundaries of salient objects through the MLP. Results from extensive experiments indicate that the proposed WaveNet achieves impressive performance on benchmark RGB-thermal infrared datasets. The results and code are publicly available at https://github.com/nowander/WaveNet.
引用
收藏
页码:3027 / 3039
页数:13
相关论文
共 50 条
  • [21] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [22] Asymmetric cross-modal activation network for RGB-T salient object detection
    Xu, Chang
    Li, Qingwu
    Zhou, Qingkai
    Jiang, Xiongbiao
    Yu, Dabing
    Zhou, Yaqin
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [23] TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection
    Guo, Qinling
    Zhou, Wujie
    Lei, Jingsheng
    Yu, Lu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1655 - 1659
  • [24] Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection
    Zhao, Jianxun
    Wen, Xin
    He, Yu
    Yang, Xiaowei
    Song, Kechen
    Sensors, 2024, 24 (24)
  • [25] EAF-Net: an enhancement and aggregation–feedback network for RGB-T salient object detection
    Haiyang He
    Jing Wang
    Xiaolin Li
    Minglin Hong
    Shiguo Huang
    Tao Zhou
    Machine Vision and Applications, 2022, 33
  • [26] Feature differences reduction and specific features preserving network for RGB-T salient object detection
    Xu, Qiqi
    Di, Zhenguang
    Dong, Haoyu
    Yang, Gang
    IMAGE AND VISION COMPUTING, 2024, 152
  • [27] Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection
    Huo, Fushuo
    Zhu, Xuegui
    Zhang, Lei
    Liu, Qifeng
    Shu, Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3111 - 3124
  • [28] Transformer-based Adaptive Interactive Promotion Network for RGB-T Salient Object Detection
    Zhu, Jinchao
    Zhang, Xiaoyu
    Dong, Feng
    Yan, Siyu
    Meng, Xianbang
    Li, Yuehua
    Tan, Panlong
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 1989 - 1994
  • [29] Does Thermal Really Always Matter for RGB-T Salient Object Detection?
    Cong, Runmin
    Zhang, Kepu
    Zhang, Chen
    Zheng, Feng
    Zhao, Yao
    Huang, Qingming
    Kwong, Sam
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6971 - 6982
  • [30] Modality-Induced Transfer-Fusion Network for RGB-D and RGB-T Salient Object Detection
    Chen, Gang
    Shao, Feng
    Chai, Xiongli
    Chen, Hangwei
    Jiang, Qiuping
    Meng, Xiangchao
    Ho, Yo-Sung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1787 - 1801