Facile synthesis of crack-free single-crystalline Al-doped Co-free Ni-rich cathode material for lithium-ion batteries

被引:11
|
作者
Liu, Qi [1 ]
Wu, Zhenqian [1 ]
Sun, Jingying [2 ]
Xu, Ruimei [2 ]
Li, Xianwei [1 ]
Yu, Xiao [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat sen Univ, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Co-free cathode material; Al dopant; Single-crystal; Chelation; SYNTHESIS STRATEGY; CYCLE STABILITY; COBALT; PERFORMANCE; CHEMISTRY;
D O I
10.1016/j.electacta.2022.141473
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Co-free, Ni-rich cathode materials have aroused enormous attentions for the low cost, sustainable development of lithium-ion batteries. However, it is not easy to fabricate single-crystalline Ni-rich cathode materials from the hierarchical structured precursors via coprecipitation method. Furthermore, it is difficult to introduce Al dopant during the coprecipitation process to obtain high quality Ni-rich cathode material owing to the rapid sediment of Al3+. Herein, we developed a one-step stirring-assisted cation chelation and reassembly route for fabricating crack-free single-crystalline, Al-doped Co-free Ni-rich cathode material. The fabricated LiNi0.8Mn0.16Al0.04O2 shows a high capacity of 204 mAh g-1 at 0.1C, excellent rate capability (143 mAh g-1 at 10C), and good cycling stability (an initial specific capacity of 178 mAh g-1 with capacity retention of 82.2% at 1C over 200 cycles). Furthermore, when tested at a raised temperature of 55 degrees C, it exhibited an initial capacity of 194.7 mAh g-1 with capacity retention of 82.1% at 1C over 100 cycles. The outstanding electrochemical performance can be ascribed to the synergistic effect of single crystalline structure and successful doping of Al element in the cathode, which enable fast ion and electron transport, suppress Li/Ni mixing and maintain the structural stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Phase behavior tuning enable high-safety and crack-free Ni-rich layered cathode for lithium-ion battery
    Liu, Na
    Chen, Lai
    Wang, Haoyu
    Zhao, Jiayu
    Gao, Fei
    Liu, Jing
    Dong, Jinyang
    Lu, Yun
    Li, Ning
    Shi, Qi
    Su, Yuefeng
    Wu, Feng
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [12] Improved electrochemical performance of Co-free Ni-rich cathode material for lithium-ion battery through multi-element composite modification
    Liu, Lei
    Zhao, Yan
    Shan, Liang
    Jiang, Guanghui
    Zhang, Yingjie
    Meng, Qi
    Dong, Peng
    ELECTROCHIMICA ACTA, 2024, 477
  • [13] A Ni-rich Cathode Material for Lithium-ion Batteries with Improved Safety and Cost
    Baazizi, Mariam
    Dahbi, Mouad
    Aqil, Mohamed
    Ghamouss, Fouad
    Saadoune, Ismael
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 757 - 760
  • [14] Inhibiting Lattice Distortion of Ultrahigh Nickel Co-Free Cathode Material for Lithium-Ion Batteries
    Shang, Yang
    Xu, Zhichao
    Bao, Yifan
    Fu, Chaochao
    Mao, Gaoqiang
    Zhao, Yi
    Yang, Hui Ying
    Shen, Jixue
    NANO LETTERS, 2025, 25 (05) : 1845 - 1853
  • [15] Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries
    Ji-Lei Shi
    Hang Sheng
    Xin-Hai Meng
    Xu-Dong Zhang
    Dan Lei
    Xiaorui Sun
    Hongyi Pan
    Junyang Wang
    Xiqian Yu
    Chunsheng Wang
    Yangxing Li
    Yu-Guo Guo
    NationalScienceReview, 2023, 10 (02) : 232 - 241
  • [16] Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries
    Shi, Ji-Lei
    Sheng, Hang
    Meng, Xin-Hai
    Zhang, Xu-Dong
    Lei, Dan
    Sun, Xiaorui
    Pan, Hongyi
    Wang, Junyang
    Yu, Xiqian
    Wang, Chunsheng
    Li, Yangxing
    Guo, Yu-Guo
    NATIONAL SCIENCE REVIEW, 2023, 10 (02)
  • [17] High-entropy doping promising ultrahigh-Ni Co-free single-crystalline cathode toward commercializable high-energy lithium-ion batteries
    Liang, Longwei
    Su, Maoshui
    Sun, Zhefei
    Wang, Lixian
    Hou, Linrui
    Liu, Haodong
    Zhang, Qiaobao
    Yuan, Changzhou
    SCIENCE ADVANCES, 2024, 10 (25):
  • [18] Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni-Co-Al Cathode Materials for Lithium-Ion Batteries
    Xu, Chunliu
    Yang, Wen
    Xiang, Wei
    Wu, Zhenguo
    Song, Yang
    Wang, Gongke
    Liu, Yuxia
    Yan, Hua
    Zhang, Bin
    Zhong, Benhe
    Guo, Xiaodong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (52) : 22549 - 22558
  • [19] Design of high-performance and sustainable Co-free Ni-rich cathodes for next-generation lithium-ion batteries
    Ge, Hao
    Shen, Zhiwen
    Wang, Yanhong
    Sun, Zhijia
    Cao, Xiaoman
    Wang, Chaoyue
    Fan, Xinyue
    Bai, Jinsong
    Li, Rundong
    Yang, Tianhua
    Wu, Gang
    SUSMAT, 2024, 4 (01): : 48 - 71
  • [20] Pushing the Energy-Lifetime Frontier of Li-Ion Batteries: Study of Ni-Rich, Co-Free NMAW Cathode Material
    Hamam, Ines
    Omessi, Roee
    Abraham, Jeffin James
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)