Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries

被引:64
|
作者
Shi, Ji-Lei [1 ]
Sheng, Hang [1 ]
Meng, Xin-Hai [1 ]
Zhang, Xu-Dong [1 ]
Lei, Dan [1 ]
Sun, Xiaorui [2 ]
Pan, Hongyi [2 ]
Wang, Junyang [2 ]
Yu, Xiqian [2 ]
Wang, Chunsheng [4 ]
Li, Yangxing [3 ]
Guo, Yu-Guo [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing Natl Lab Mol Sci BNLMS, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100190, Peoples R China
[3] Chery New Energy Automobile Co Ltd, Wuhu 241002, Peoples R China
[4] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; high energy density; Ni-rich cathodes; single-crystalline; surface energy; LAYERED OXIDE CATHODES;
D O I
10.1093/nsr/nwac226
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A single-crystalline Ni-rich (SCNR) cathode with a large particle size can achieve higher energy density, and is safer, than polycrystalline counterparts. However, synthesizing large SCNR cathodes (>5 mu m) without compromising electrochemical performance is very challenging due to the incompatibility between Ni-rich cathodes and high temperature calcination. Herein, we introduce Vegard's Slope as a guide for rationally selecting sintering aids, and we successfully synthesize size-controlled SCNR cathodes, the largest of which can be up to 10 mu m. Comprehensive theoretical calculation and experimental characterization show that sintering aids continuously migrate to the particle surface, suppress sublattice oxygen release and reduce the surface energy of the typically exposed facets, which promotes grain boundary migration and elevates calcination critical temperature. The dense SCNR cathodes, fabricated by packing of different-sized SCNR cathode particles, achieve a highest electrode press density of 3.9 g cm(-3) and a highest volumetric energy density of 3000 Wh L-1. The pouch cell demonstrates a high energy density of 303 Wh kg(-1), 730 Wh L-1 and 76% capacity retention after 1200 cycles. SCNR cathodes with an optimized particle size distribution can meet the requirements for both electric vehicles and portable devices. Furthermore, the principle for controlling the growth of SCNR particles can be widely applied when synthesizing other materials for Li-ion, Na-ion and K-ion batteries. Controllable grain sizes in a wide range enable the single-crystalline Ni-rich cathode to break through the bottleneck of volumetric energy density, which makes it qualified to replace LiCoO2 and alleviate the cobalt crisis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries
    Ji-Lei Shi
    Hang Sheng
    Xin-Hai Meng
    Xu-Dong Zhang
    Dan Lei
    Xiaorui Sun
    Hongyi Pan
    Junyang Wang
    Xiqian Yu
    Chunsheng Wang
    Yangxing Li
    Yu-Guo Guo
    NationalScienceReview, 2023, 10 (02) : 232 - 241
  • [2] Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries
    Nam, Gwonsik
    Hwang, Jaeseong
    Kang, Donghun
    Oh, Sieon
    Chae, Sujong
    Yoon, Moonsu
    Ko, Minseong
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 562 - 568
  • [3] Quantifying Degradation Parameters of Single-Crystalline Ni-Rich Cathodes in Lithium-Ion Batteries
    Zhao, Wengao
    Wang, Kuan
    Fan, Xinming
    Ren, Fucheng
    Xu, Xieyu
    Liu, Yangyang
    Xiong, Shizhao
    Liu, Xiangsi
    Zhang, Zhengfeng
    Si, Mayan
    Zhang, Ruizhuo
    van den Bergh, Wessel
    Yan, Pengfei
    Battaglia, Corsin
    Brezesinski, Torsten
    Yang, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (32)
  • [4] Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries
    Gwonsik Nam
    Jaeseong Hwang
    Donghun Kang
    Sieon Oh
    Sujong Chae
    Moonsu Yoon
    Minseong Ko
    Journal of Energy Chemistry , 2023, (04) : 562 - 568
  • [5] Controlled Synthesis of Single-Crystalline Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries
    Cao, Bokai
    Fang, Hai-Tao
    Li, De
    Chen, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (48) : 53667 - 53676
  • [6] Ni-rich cathode materials for stable high-energy lithium-ion batteries
    Wu, Zhenzhen
    Zhang, Cheng
    Yuan, Fangfang
    Lyu, Miaoqiang
    Yang, Pan
    Zhang, Lei
    Zhou, Ming
    Wang, Liang
    Zhang, Shanqing
    Wang, Lianzhou
    NANO ENERGY, 2024, 126
  • [7] All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries
    Qin, Li
    Yu, Haifeng
    Jiang, Xin
    Chen, Ling
    Cheng, Qilin
    Jiang, Hao
    SCIENCE CHINA-MATERIALS, 2024, 67 (02) : 650 - 657
  • [8] Synthetic control and structural stabilization of Ni-rich layered oxides as high-energy cathodes for lithium-ion batteries
    Zhao, Jianqing
    Gao, Lijun
    Zhu, Wenchang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [9] Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries
    Gomez-Martin, Aurora
    Reissig, Friederike
    Frankenstein, Lars
    Heidbuchel, Marcel
    Winter, Martin
    Placke, Tobias
    Schmuch, Richard
    ADVANCED ENERGY MATERIALS, 2022, 12 (08)
  • [10] Microstructures of layered Ni-rich cathodes for lithium-ion batteries
    Lu, Jingyu
    Xu, Chao
    Dose, Wesley
    Dey, Sunita
    Wang, Xihao
    Wu, Yehui
    Li, Deping
    Ci, Lijie
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (09) : 4707 - 4740