Passivity-based boundary control for stochastic Korteweg-de Vries-Burgers equations

被引:1
|
作者
Liang, Shuang [1 ]
Wu, Kai-Ning [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Peoples R China
关键词
boundary control; passivity; robust passivity; Stochastic Korteweg-de Vries-Burgers equations; COMPLEX DYNAMICAL NETWORKS; NONLINEAR-SYSTEMS; STABILIZATION; INPUT; SYNCHRONIZATION;
D O I
10.1002/mma.10005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The passivity-based boundary control is considered for stochastic Korteweg-de Vries-Burgers (SKdVB) equations. Both the stochastic input strictly passive (SISP) and stochastic output strictly passive (SOSP) are studied. By introducing Lyapunov functionals and Wirtinger's inequality, sufficient criteria are derived to establish SISP and SOSP for SKdVB equations with boundary disturbances. Moreover, when parameter uncertainties arise in SKdVB equations, the robust stochastic passivity is also investigated and sufficient criteria are presented to achieve the robust SISP and SOSP. Two numerical simulations are employed to show the effectiveness and advantages of our theoretical results.
引用
收藏
页码:8089 / 8104
页数:16
相关论文
共 50 条
  • [21] Adaptive boundary control of the unforced generalized Korteweg-de Vries-Burgers equation
    Smaoui, N.
    El-Kadri, A.
    Zribi, M.
    NONLINEAR DYNAMICS, 2012, 69 (03) : 1237 - 1253
  • [22] Korteweg-de Vries-Burgers system in RN
    Dlotko, Tomasz
    Kania, Maria B.
    Ma, Shan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 853 - 872
  • [23] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    Acta Mathematica Sinica(English Series), 2006, 22 (05) : 1441 - 1456
  • [24] Asymptotics for the Korteweg-de Vries-Burgers equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1441 - 1456
  • [25] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356
  • [26] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [27] Distributed control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2008, 2008
  • [28] MARTINGALE SOLUTION OF STOCHASTIC HYBRID KORTEWEG-DE VRIES-BURGERS EQUATION
    Karczewska, Anna
    Szczecinski, Maciej
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 85 : 103 - 118
  • [29] Boundary Stabilization of the Time Fractional Korteweg-de Vries-Burgers Equation
    Li, Ying
    Cheng, Yi
    Li, Cuiying
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 121 - 124
  • [30] Boundary controllability for the Korteweg-de Vries-Burgers equation on a finite domain
    Li, Jie
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,