Boundary controllability for the Korteweg-de Vries-Burgers equation on a finite domain

被引:0
|
作者
Li, Jie [1 ]
机构
[1] NingboTech Univ, Sch Comp & Data Engn, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed parameter; Korteweg-de Vries-Burgers; Boundary controllability; Hilbert uniqueness method; STABILIZATION;
D O I
10.1007/s13226-024-00697-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the controllability of the Korteweg-de Vries-Burgers equation on a finite domain. Because the third-order of the Korteweg-de Vries-Burgers equation, there needs three boundary conditions to secure the well-posedness of the system. We show that if we only use the right Neumann boundary condition, then the linear system is exactly contrallable if and only if the length of the spatial domain does not belong to a set of critical values. By contrast, if we also use the right Dirichlet boundary condition besides the right Neumann boundary condition, the linear system is exactly controllable without the limit of the length of the domain. Moreover, we also show that the nonlinear system is local exactly controllable via the method of contraction mapping principle.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [2] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [3] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [4] KORTEWEG-DE VRIES-BURGERS EQUATION
    CANOSA, J
    GAZDAG, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) : 393 - 403
  • [5] WELL-POSEDNESS OF KORTEWEG-DE VRIES-BURGERS EQUATION ON A FINITE DOMAIN
    Li, Jie
    Liu, Kangsheng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 91 - 116
  • [6] Boundary stabilization of the Generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 177 - 180
  • [7] Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain
    Jie Li
    Kangsheng Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 91 - 116
  • [8] Boundary control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    NONLINEAR DYNAMICS, 2008, 51 (03) : 439 - 446
  • [9] Global boundary stabilization of the Korteweg-de Vries-Burgers equation
    Liu, Wei-Jiu
    Krstic, Miroslav
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 315 - 354
  • [10] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    Acta Mathematica Sinica(English Series), 2006, 22 (05) : 1441 - 1456