Entanglement-efficient bipartite-distributed quantum computing

被引:0
|
作者
Wu, Jun-Yi [1 ,2 ,3 ]
Matsui, Kosuke [4 ]
Forrer, Tim [4 ]
Soeda, Akihito [4 ,5 ,6 ]
Andres-Martinez, Pablo [7 ]
Mills, Daniel [7 ]
Henaut, Luciana [7 ]
Murao, Mio [4 ]
机构
[1] Tamkang Univ, Dept Phys, 151 Yingzhuan Rd, New Taipei City 25137, Taiwan
[2] Tamkang Univ, Ctr Adv Quantum Comp, 151 Yingzhuan Rd, New Taipei City 25137, Taiwan
[3] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[4] Univ Tokyo, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[5] Natl Inst Informat, Principles Informat Res Div, 2-1-2 Hitotsubashi,Chiyoda Ku, Tokyo 1018430, Japan
[6] SOKENDAI, Dept Informat, Sch Multidisciplinary Sci, 2-1-2 Hitotsubashi,Chiyoda Ku, Tokyo 1018430, Japan
[7] Quantinuum, 13-15 Hills Rd,Terrington House, Cambridge CB2 1NL, England
来源
QUANTUM | 2023年 / 7卷
基金
日本学术振兴会;
关键词
HERALDED ENTANGLEMENT; TELEPORTATION; COMPUTATION; QUBITS; ATOMS; STATE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In noisy intermediate-scale quantum computing, the limited scalability of a single quantum processing unit (QPU) can be extended through distributed quantum computing (DQC), in which one can implement global operations over two QPUs by entanglement -assisted local operations and classical communication. To facilitate this type of DQC in experiments, we need an entanglement-efficient protocol. To this end, we extend the proto-col in [Eisert et. al., PRA, 62:052317(2000)] implementing each nonlocal controlled-unitary gate locally with one maximally entangled pair to a packing protocol, which can pack multiple nonlocal controlled-unitary gates locally using one maximally entangled pair. In particular, two types of packing processes are introduced as the building blocks, namely the distributing processes and embedding processes. Each distributing process distributes corresponding gates locally with one entangled pair. The ef-ficiency of entanglement is then enhanced by embedding processes, which merge two non -sequential distributing processes and hence save the entanglement cost. We show that the structure of distributability and embeddability of a quantum circuit can be fully represented by the corresponding packing graphs and conflict graphs. Based on these graphs, we derive heuristic algorithms for finding an entanglement-efficient packing of distributing processes for a given quantum circuit to be implemented by two parties. These algorithms can determine the required number of local auxiliary qubits in the DQC. We apply these algorithms for bipartite DQC of unitary coupled-cluster circuits and find a significant reduction of entanglement cost through embeddings. This method can determine a constructive upper bound on the entanglement cost for the DQC of quantum circuits.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Entanglement of Bipartite Quantum Systems Driven by Repeated Interactions
    Attal, S.
    Deschamps, J.
    Pellegrini, C.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (03) : 819 - 837
  • [32] Entanglement in SO(3)-invariant bipartite quantum systems
    Breuer, HP
    PHYSICAL REVIEW A, 2005, 71 (06):
  • [33] Entanglement of Bipartite Quantum Systems Driven by Repeated Interactions
    S. Attal
    J. Deschamps
    C. Pellegrini
    Journal of Statistical Physics, 2014, 154 : 819 - 837
  • [34] Bipartite entanglement entropy in fractional quantum Hall states
    Zozulya, O. S.
    Haque, M.
    Schoutens, K.
    Rezayi, E. H.
    PHYSICAL REVIEW B, 2007, 76 (12):
  • [35] Protecting bipartite entanglement by collective decay and quantum interferences
    Nair, Anjali N.
    Arun, R.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [36] Protecting bipartite entanglement by collective decay and quantum interferences
    Anjali N. Nair
    R. Arun
    Quantum Information Processing, 21
  • [37] Statistical Distribution of Quantum Entanglement for a Random Bipartite State
    Nadal, Celine
    Majumdar, Satya N.
    Vergassola, Massimo
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (02) : 403 - 438
  • [38] Multipartite entanglement outperforming bipartite entanglement under limited quantum system sizes
    Yamasaki, Hayata
    Pirker, Alexander
    Murao, Mio
    Duer, Wolfgang
    Kraus, Barbara
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [39] Distributed quantum computing
    Buhrman, H
    Röhrig, H
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2003, PROCEEDINGS, 2003, 2747 : 1 - 20
  • [40] Experimental Quantum Computing without Entanglement
    Lanyon, B. P.
    Barbieri, M.
    Almeida, M. P.
    White, A. G.
    PHYSICAL REVIEW LETTERS, 2008, 101 (20)