Entanglement-efficient bipartite-distributed quantum computing

被引:0
|
作者
Wu, Jun-Yi [1 ,2 ,3 ]
Matsui, Kosuke [4 ]
Forrer, Tim [4 ]
Soeda, Akihito [4 ,5 ,6 ]
Andres-Martinez, Pablo [7 ]
Mills, Daniel [7 ]
Henaut, Luciana [7 ]
Murao, Mio [4 ]
机构
[1] Tamkang Univ, Dept Phys, 151 Yingzhuan Rd, New Taipei City 25137, Taiwan
[2] Tamkang Univ, Ctr Adv Quantum Comp, 151 Yingzhuan Rd, New Taipei City 25137, Taiwan
[3] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[4] Univ Tokyo, Hongo 7-3-1,Bunkyo Ku, Tokyo 1130033, Japan
[5] Natl Inst Informat, Principles Informat Res Div, 2-1-2 Hitotsubashi,Chiyoda Ku, Tokyo 1018430, Japan
[6] SOKENDAI, Dept Informat, Sch Multidisciplinary Sci, 2-1-2 Hitotsubashi,Chiyoda Ku, Tokyo 1018430, Japan
[7] Quantinuum, 13-15 Hills Rd,Terrington House, Cambridge CB2 1NL, England
来源
QUANTUM | 2023年 / 7卷
基金
日本学术振兴会;
关键词
HERALDED ENTANGLEMENT; TELEPORTATION; COMPUTATION; QUBITS; ATOMS; STATE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In noisy intermediate-scale quantum computing, the limited scalability of a single quantum processing unit (QPU) can be extended through distributed quantum computing (DQC), in which one can implement global operations over two QPUs by entanglement -assisted local operations and classical communication. To facilitate this type of DQC in experiments, we need an entanglement-efficient protocol. To this end, we extend the proto-col in [Eisert et. al., PRA, 62:052317(2000)] implementing each nonlocal controlled-unitary gate locally with one maximally entangled pair to a packing protocol, which can pack multiple nonlocal controlled-unitary gates locally using one maximally entangled pair. In particular, two types of packing processes are introduced as the building blocks, namely the distributing processes and embedding processes. Each distributing process distributes corresponding gates locally with one entangled pair. The ef-ficiency of entanglement is then enhanced by embedding processes, which merge two non -sequential distributing processes and hence save the entanglement cost. We show that the structure of distributability and embeddability of a quantum circuit can be fully represented by the corresponding packing graphs and conflict graphs. Based on these graphs, we derive heuristic algorithms for finding an entanglement-efficient packing of distributing processes for a given quantum circuit to be implemented by two parties. These algorithms can determine the required number of local auxiliary qubits in the DQC. We apply these algorithms for bipartite DQC of unitary coupled-cluster circuits and find a significant reduction of entanglement cost through embeddings. This method can determine a constructive upper bound on the entanglement cost for the DQC of quantum circuits.
引用
收藏
页数:40
相关论文
共 50 条
  • [21] Bound Entanglement for Bipartite and Tripartite Quantum Systems
    Zhao, Hui
    Guo, Sha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (09) : 3238 - 3250
  • [22] The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death
    Cui, Wei
    Xi, Zairong
    Pan, Yu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (02)
  • [23] Quantum computing without entanglement
    Biham, E
    Brassard, G
    Kenigsberg, D
    Mor, T
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (01) : 15 - 33
  • [24] Quantum computing and entanglement for mathematicians
    Wallach, Nolan R.
    REPRESENTATION THEORY AND COMPLEX ANALYSIS, 2008, 1931 : 345 - 376
  • [25] Statistical Distribution of Quantum Entanglement for a Random Bipartite State
    Celine Nadal
    Satya N. Majumdar
    Massimo Vergassola
    Journal of Statistical Physics, 2011, 142 : 403 - 438
  • [26] Exponential Clustering of Bipartite Quantum Entanglement at Arbitrary Temperatures
    Kuwahara, Tomotaka
    Saito, Keiji
    PHYSICAL REVIEW X, 2022, 12 (02)
  • [27] Reply to "Comment on 'Protecting bipartite entanglement by quantum interferences'"
    Das, Sumanta
    Agarwal, G. S.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [28] Bipartite quantum state discrimination and decomposable entanglement witness
    Ha, Donghoon
    San Kim, Jeong
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [29] Erratum to: Bound Entanglement for Bipartite and Tripartite Quantum Systems
    Hui Zhao
    Sha Guo
    International Journal of Theoretical Physics, 2015, 54 : 3860 - 3861
  • [30] Sensitivity of entanglement measures in bipartite pure quantum states
    Georgiev, Danko D.
    Gudder, Stanley P.
    MODERN PHYSICS LETTERS B, 2022, 36 (22):