Superlinear elliptic hemivariational inequalities

被引:0
|
作者
Bai, Yunru [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
[2] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
关键词
hemivariational inequality; Clarke subdifferential; nonsmooth critical point theory; critical groups; nodal solutions;
D O I
10.15672/hujms.1173649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using the nonsmooth critical point theory and critical groups we prove two multiplicity theorems producing three and five solutions respectively. In the second multiplicity theorem, we provide sign information for all the solutions and the solutions are ordered.
引用
收藏
页码:1631 / 1657
页数:27
相关论文
共 50 条
  • [31] On some elliptic hemivariational and variational-hemivaritional inequalities
    Marano, SA
    Papageorgiou, NS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) : 757 - 774
  • [32] NONEXISTENCE RESULTS OF ENTIRE SOLUTIONS FOR SUPERLINEAR ELLIPTIC INEQUALITIES
    USAMI, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 164 (01) : 59 - 82
  • [33] Vector Quasi-Hemivariational Inequalities and Discontinuous Elliptic Systems
    S. Carl
    Z. Naniewicz
    Journal of Global Optimization, 2006, 34 : 609 - 634
  • [34] Vector quasi-hemivariational inequalities and discontinuous elliptic systems
    Carl, S
    Naniewicz, Z
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 34 (04) : 609 - 634
  • [35] Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities
    Gariboldi, Claudia M.
    Migorski, Stanislaw
    Ochal, Anna
    Tarzia, Domingo A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 2): : 1453 - 1475
  • [36] Optimal shape design for elliptic hemivariational inequalities in nonlinear elasticity
    Denkowski, Z
    Migórski, S
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 31 - 40
  • [37] Generalized Penalty Method for Elliptic Variational-Hemivariational Inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02): : 789 - 812
  • [38] Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities
    Gariboldi, Claudia M.
    Migórski, Stanislaw
    Ochal, Anna
    Tarzia, Domingo A.
    Applied Mathematics and Optimization, 2021, 84 : 1453 - 1475
  • [39] Minimax principles for elliptic mixed hemivariational-variational inequalities
    Han, Weimin
    Matei, Andaluzia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [40] A class of elliptic quasi-variational-hemivariational inequalities with applications
    Migorski, Stanislaw
    Yao, Jen-Chih
    Zeng, Shengda
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 421