Superlinear elliptic hemivariational inequalities

被引:0
|
作者
Bai, Yunru [1 ]
Gasinski, Leszek [2 ]
Papageorgiou, Nikolaos S. [3 ]
机构
[1] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
[2] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
关键词
hemivariational inequality; Clarke subdifferential; nonsmooth critical point theory; critical groups; nodal solutions;
D O I
10.15672/hujms.1173649
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear nonhomogeneous Dirichlet problem with a nonsmooth potential which is superlinear but without satisfying the Ambrosetti-Rabinowitz condition. Using the nonsmooth critical point theory and critical groups we prove two multiplicity theorems producing three and five solutions respectively. In the second multiplicity theorem, we provide sign information for all the solutions and the solutions are ordered.
引用
收藏
页码:1631 / 1657
页数:27
相关论文
共 50 条
  • [21] NONLOCAL ELLIPTIC VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Migorski, Stanislaw
    Van Thien Nguyen
    Zeng, Shengda
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2020, 32 (01) : 51 - 58
  • [22] Inverse Coefficient Problems for Elliptic Hemivariational Inequalities
    Xiao, Cui'e
    Liu, Zhenhai
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (04) : 473 - 480
  • [23] Optimal Control of Elliptic Variational-Hemivariational Inequalities
    Peng, Zijia
    Kunisch, Karl
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 1 - 25
  • [24] On boundary variational-hemivariational inequalities of elliptic type
    Liu, Zhenhai
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 419 - 434
  • [25] Convergence Results for Elliptic Variational-Hemivariational Inequalities
    Cai, Dong-ling
    Sofonea, Mircea
    Xiao, Yi-bin
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 2 - 23
  • [26] NUMERICAL ANALYSIS OF ELLIPTIC HEMIVARIATIONAL INEQUALITIES FOR SEMIPERMEABLE MEDIA
    Han, Weimin
    Huang, Ziping
    Wang, Cheng
    Xu, Wei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 506 - 523
  • [27] A Penalty Method for Elliptic Variational-Hemivariational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    AXIOMS, 2024, 13 (10)
  • [28] The virtual element method for general elliptic hemivariational inequalities
    Wang, Fei
    Wu, Bangmin
    Han, Weimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [29] Generalized Penalty Method for Elliptic Variational–Hemivariational Inequalities
    Yi-bin Xiao
    Mircea Sofonea
    Applied Mathematics & Optimization, 2021, 83 : 789 - 812
  • [30] A class of variational-hemivariational inequalities of elliptic type
    Liu, Zhenhai
    Motreanu, Dumitru
    NONLINEARITY, 2010, 23 (07) : 1741 - 1752