An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries

被引:4
|
作者
Guan, Zeliang [1 ]
Bai, Ling [1 ]
Du, Binyang [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China
关键词
lithium-sulfur battery; ionic liquid; electrolyte; additive; ELECTROCHEMICAL PERFORMANCE; EFFICIENT; SALTS; INTERPHASE; AMMONIUM; SHUTTLE; CATHODE; LINO3;
D O I
10.3390/ma16237504
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the development of mobile electronic devices, there are more and more requirements for high-energy storage equipment. Traditional lithium-ion batteries, like lithium-iron phosphate batteries, are limited by their theoretical specific capacities and might not meet the requirements for high energy density in the future. Lithium-sulfur batteries (LSBs) might be ideal next-generation energy storage devices because they have nearly 10 times the theoretical specific capacities of lithium-ion batteries. However, the severe capacity decay of LSBs limits their application, especially at high currents. In this study, an ionic liquid (IL) electrolyte additive, TDA+TFSI, was reported. When 5% of the TDA+TFSI additive was added to a traditional ether-based organic electrolyte, the cycling performance of the LSBs was significantly improved compared with that of the LSBs with the pure traditional organic electrolyte. At a rate of 0.5 C, the discharge specific capacity in the first cycle of the LSBs with the 5% TDA+TFSI electrolyte additive was 1167 mAh g-1; the residual specific capacities after 100 cycles and 300 cycles were 579 mAh g-1 and 523 mAh g-1, respectively; and the average capacity decay rate per cycle was only 0.18% in 300 cycles. Moreover, the electrolyte with the TDA+TFSI additive had more obvious advantages than the pure organic ether-based electrolyte at high charge and discharge currents of 1.0 C. The residual discharge specific capacities were 428 mAh g-1 after 100 cycles and 399 mAh g-1 after 250 cycles, which were 13% higher than those of the LSBs without the TDA+TFSI additive. At the same time, the Coulombic efficiencies of the LSBs using the TDA+TFSI electrolyte additive were more stable than those of the LSBs using the traditional organic ether-based electrolyte. The results showed that the LSBs with the TDA+TFSI electrolyte additive formed a denser and more uniform solid electrolyte interface (SEI) film during cycling, which improved the stability of the electrochemical reaction.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Aqueous Supramolecular Binder for High-Performance Lithium-Sulfur Batteries
    Liu, Ruliang
    Ou, Jiaxin
    Xie, Lijun
    Liang, Yubing
    Lai, Xinyi
    Deng, Zhaoxia
    Yin, Wei
    POLYMERS, 2023, 15 (12)
  • [32] Upcycling of paper waste for high-performance lithium-sulfur batteries
    Zhou, Yucheng
    Zhang, Yunya
    Li, Xiaodong
    MATERIALS TODAY ENERGY, 2021, 19
  • [33] Advancements in functionalized high-performance separators for lithium-sulfur batteries
    Xia, Shuang
    Xu, Xuming
    Wu, Wenzhuo
    Chen, Yuhui
    Liu, Lili
    Wang, Gaojun
    Fu, Lijun
    Zhang, Qiangyu
    Wang, Tao
    He, Jiarui
    Wu, Yuping
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2025, 163
  • [34] Polyglutamic Acid Binder for High-Performance Lithium-Sulfur Batteries
    Pang, Zhiyuan
    Zhang, Hongzhou
    Ma, Yue
    Song, Dawei
    Shi, Xixi
    Zhang, Lianqi
    Zhou, Yong
    COATINGS, 2022, 12 (10)
  • [35] Poly(ionic liquid)-zinc polyoxometalate composite as a binder-free cathode for high-performance lithium-sulfur batteries
    Singh, Vikram
    Padhan, Anil Kumar
    Das Adhikary, Subhasis
    Tiwari, Aarti
    Mandal, Debaprasad
    Nagaiah, Tharamani C.
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (07) : 3018 - 3023
  • [36] The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium-sulfur batteries
    Talian, Sara Drvaric
    Bester-Rogac, Marija
    Dominko, Robert
    ELECTROCHIMICA ACTA, 2017, 252 : 147 - 153
  • [37] Poreless Separator and Electrolyte Additive for Lithium-Sulfur Batteries with High Areal Energy Densities
    Kim, Joo-Seong
    Yoo, Dong-Joo
    Min, Jaeyun
    Shakoor, Rana A.
    Kahraman, Ramazan
    Choi, Jang Wook
    CHEMNANOMAT, 2015, 1 (04): : 240 - 245
  • [38] Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries
    Chen, Manfang
    Jiang, Shouxin
    Cai, Siyu
    Wang, Xianyou
    Xiang, Kaixiong
    Ma, Zhongyun
    Song, Peng
    Fisher, Adrian C.
    CHEMICAL ENGINEERING JOURNAL, 2017, 313 : 404 - 414
  • [39] A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries
    Zeng, Shuaibo
    Li, Xin
    Guo, Fei
    Zhong, Hai
    Mai, Yaohua
    ELECTROCHIMICA ACTA, 2019, 320
  • [40] Targeted Catalysis of the Sulfur Evolution Reaction for High-Performance Lithium-Sulfur Batteries
    Qu, Wenjia
    Lu, Ziyang
    Geng, Chuannan
    Wang, Li
    Guo, Yong
    Zhang, Yibo
    Wang, Weichao
    Lv, Wei
    Yang, Quan-Hong
    ADVANCED ENERGY MATERIALS, 2022, 12 (38)