Recovering CSI and Data in Dense Network Environments Using IEEE 802.11ax Midamble

被引:0
|
作者
Lee, Kanghyun [1 ,2 ]
Shin, Juhun [1 ,2 ]
Park, Jongyeon [1 ,2 ]
Son, Youngwook [3 ]
Bahk, Saewoong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn ECE, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst New Media & Commun INMC, Seoul 08826, South Korea
[3] Samsung Elect, Syst LSI, Seoul 06765, South Korea
基金
新加坡国家研究基金会;
关键词
Wi-Fi; IEEE; 802.11ax; HE WLAN; midamble; caudal loss; CSI corruption;
D O I
10.1109/ACCESS.2023.3290996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been considerable amount of research to improve performance for a dense wireless local area network (WLAN) environment. While some studies focus on aggressive channel access, others highlight frequent channel state information (CSI) corruption by excessive transmissions. We pay attention to midamble, adopted in the IEEE 802.11ax standard specification, to overcome CSI corruption. If the transmitter inserts midamble symbols, the receiver can acquire new CSI periodically during a physical layer convergence protocol (PLCP) protocol data unit (PPDU) frame. In this paper, we propose a precise receiver performance model to describe the impact of CSI, and design a standard-compliant algorithm called REMEDY that works with conventional channel access schemes by handling CSI corruption and time-varying channels in high-density WLAN networks. REMEDY determines whether to use midamble considering overhead, estimates on-frame signal-to-interference and noise ratio (SINR) to notice channel environments, and cancels the effects of scrambling and incorrect descrambling. We evaluate the performance of the conventional schemes with and without REMEDY in 11ax task group (TGax) indoor simulation scenarios using the ns-3 simulator, considering time-varying channels and CSI corruption. REMEDY helps the existing channel access schemes to achieve up to $2.20\times $ higher throughput while improving the throughput of the lowest performing group, compared to the existing schemes without REMEDY.
引用
收藏
页码:65858 / 65871
页数:14
相关论文
共 50 条
  • [41] MU-MIMO enabled uplink OFDMA MAC protocol in dense IEEE 802.11ax WLANs
    Joo, Sohyun
    Kim, Taeyoon
    Song, Taewon
    Pack, Sangheon
    ICT EXPRESS, 2020, 6 (04): : 287 - 290
  • [42] Deadline-aware Emergency Data Resource Allocation Control for IEEE 802.11ax
    Filoso, David Gonzalez
    Hara, Kazutaka
    Tamaki, Shinya
    Minami, Katsuya
    Tsuji, Kohji
    Kubo, Ryogo
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [43] On Construction of Precise Positioning System via IEEE 802.11ax
    Tsung, Chen-Kun
    Yang, Chao-Tung
    Liu, Jung-Chun
    Hsiung, Chun
    Chang, Shih-Kuang
    Hsu, Ming-Shang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12951 - 12960
  • [44] On Quality-of-Service Provisioning in IEEE 802.11ax WLANs
    Deng, Der-Jiunn
    Lien, Shao-Yu
    Lee, Jorden
    Chen, Kwang-Cheng
    IEEE ACCESS, 2016, 4 : 6086 - 6104
  • [45] An Adaptive Grouping Scheme in Ultra-Dense IEEE 802.11ax Network Using Buffer State Report Based Two-Stage Mechanism
    Jiyang Bai
    He Fang
    Junghoon Suh
    Osama Aboul-Magd
    Edward Au
    Xianbin Wang
    中国通信, 2019, 16 (09) : 31 - 44
  • [46] An Adaptive Grouping Scheme in Ultra-Dense IEEE 802.11ax Network Using Buffer State Report Based Two-Stage Mechanism
    Bai, Jiyang
    Fang, He
    Suh, Junghoon
    Ahoul-Magd, Osama
    Au, Edward
    Wang, Xianbin
    CHINA COMMUNICATIONS, 2019, 16 (09) : 31 - 44
  • [47] Adjusting OBSS/PD Based on Fuzzy Logic to Improve Throughput of IEEE 802.11ax Network
    Xin, Chu
    Zhu, Yi-hua
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 554 - 570
  • [48] Enhancing IEEE 802.11ax Network Performance: An Investigation and Modeling Into Multi-User Transmission
    Meng, Jin
    Zhao, Qinglin
    Wu, Weimin
    Jin, Minghao
    Song, Penghui
    Liu, Yingzhuang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (03) : 2151 - 2165
  • [49] Study of Bandwidth Selection Algorithm with Allowed Preamble Puncturing in IEEE 802.11ax and IEEE 802.11be Networks
    I. A. Levistky
    A. A. Tretiakov
    E. M. Khorov
    Journal of Communications Technology and Electronics, 2022, 67 : 755 - 763
  • [50] IEEE 802.11ax密集WLAN的干扰协调策略
    徐晓锋
    张闽
    钱晨喜
    陈清华
    计算机工程, 2021, 47 (01) : 182 - 187+195