Recovering CSI and Data in Dense Network Environments Using IEEE 802.11ax Midamble

被引:0
|
作者
Lee, Kanghyun [1 ,2 ]
Shin, Juhun [1 ,2 ]
Park, Jongyeon [1 ,2 ]
Son, Youngwook [3 ]
Bahk, Saewoong [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn ECE, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst New Media & Commun INMC, Seoul 08826, South Korea
[3] Samsung Elect, Syst LSI, Seoul 06765, South Korea
基金
新加坡国家研究基金会;
关键词
Wi-Fi; IEEE; 802.11ax; HE WLAN; midamble; caudal loss; CSI corruption;
D O I
10.1109/ACCESS.2023.3290996
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been considerable amount of research to improve performance for a dense wireless local area network (WLAN) environment. While some studies focus on aggressive channel access, others highlight frequent channel state information (CSI) corruption by excessive transmissions. We pay attention to midamble, adopted in the IEEE 802.11ax standard specification, to overcome CSI corruption. If the transmitter inserts midamble symbols, the receiver can acquire new CSI periodically during a physical layer convergence protocol (PLCP) protocol data unit (PPDU) frame. In this paper, we propose a precise receiver performance model to describe the impact of CSI, and design a standard-compliant algorithm called REMEDY that works with conventional channel access schemes by handling CSI corruption and time-varying channels in high-density WLAN networks. REMEDY determines whether to use midamble considering overhead, estimates on-frame signal-to-interference and noise ratio (SINR) to notice channel environments, and cancels the effects of scrambling and incorrect descrambling. We evaluate the performance of the conventional schemes with and without REMEDY in 11ax task group (TGax) indoor simulation scenarios using the ns-3 simulator, considering time-varying channels and CSI corruption. REMEDY helps the existing channel access schemes to achieve up to $2.20\times $ higher throughput while improving the throughput of the lowest performing group, compared to the existing schemes without REMEDY.
引用
收藏
页码:65858 / 65871
页数:14
相关论文
共 50 条
  • [31] Characterizing the basic performance of IEEE 802.11ax using actual hardware measurements
    Fukuda, Yutaka
    Hatase, Takuji
    Satoh, Akihiro
    Nakamura, Yutaka
    Wada, Sujiro
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
  • [32] IEEE 802.11ax: How to Build High Efficiency WLANs
    Khorov, Evgeny
    Kiryanov, Anton
    Lyakhov, Andrey
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION, EN&T 2015, 2015, : 14 - 19
  • [33] UL-MU Transmissions in IEEE 802.11ax Networks
    Kim, Yonggang
    Kim, Gyungmin
    Lee, Jiae
    Choi, Wooyeol
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 98 - 99
  • [34] Performance Analysis of Compressed Block Acknowledgment in IEEE 802.11ax
    Friedrich, Jan
    Guenther, Sebastian
    Lindemann, Christoph
    MOBIWAC'19: PROCEEDINGS OF THE 17TH ACM INTERNATIONAL SYMPOSIUM ON MOBILITY MANAGEMENT AND WIRELESS ACCESS, 2019, : 103 - 110
  • [35] Dynamic Sensitivity Control of Access Points for IEEE 802.11ax
    Shahwaiz Afaqui, M.
    Garcia-Villegas, Eduard
    Lopez-Aguilera, Elena
    Camps-Mur, Daniel
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [36] Evaluation of Dynamic Sensitivity Control Algorithm for IEEE 802.11ax
    Afaqui, M. Shahwaiz
    Garcia-Villegas, Eduard
    Lopez-Aguilera, Elena
    Smith, Graham
    Camps, Daniel
    2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2015, : 1060 - 1065
  • [37] An IEEE 802.11ax Interference-Aware MAC Queue
    Selinis, Ioannis
    Katsaros, Konstantinos
    Vahid, Seiamak
    Tafazolli, Rahim
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,
  • [38] High Efficiency WLANs IEEE 802.11ax Performance Evaluation
    Machrouh, Zineb
    Najid, Abdellah
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2018,
  • [39] On the Performance of the Spatial Reuse Operation in IEEE 802.11ax WLANs
    Wilhelmi, Francesc
    Barrachina-Munoz, Sergio
    Bellalta, Boris
    2019 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING (CSCN), 2019,
  • [40] On the Latency of IEEE 802.11ax WLANs with Parameterized Spatial Reuse
    de Carvalho Rodrigues, Eloise
    Garcia-Rodriguez, Adrian
    Galati Giordano, Lorenzo
    Geraci, Giovanni
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,