Real-time drive-by bridge damage detection using deep auto-encoder

被引:27
|
作者
Li, Zhenkun [1 ]
Lin, Weiwei [1 ]
Zhang, Youqi [1 ]
机构
[1] Aalto Univ, Dept Civil Engn, Rakentajanaukio 4, Espoo 02150, Finland
基金
芬兰科学院;
关键词
Structural health monitoring; Damage detection; Drive-by; Short-time Fourier transform; Deep auto-encoder; EXPERIMENTAL VALIDATION; IDENTIFICATION; VEHICLE; FREQUENCY; RESPONSES;
D O I
10.1016/j.istruc.2022.11.094
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Structural health condition monitoring of bridge structures has been a concern in the last decades due to their aging and deterioration, in which the core task is damage detection. Recently, the drive-by method has gained much attention as it only needs several sensors installed on the passing vehicle. In this paper, we proposed an automatic damage detection method, which can be exploited in real time when the vehicle is passing the bridge. There are three steps in the proposed method: (1) The vehicle's framed short-time vibrations instead of full-length data are utilized for training a deep auto-encoder model; at this stage, not commonly used time-domain accelerations of the passing vehicle, but its selected frequency-domain responses are employed to circumvent the influence of noises, (2) For the bridge with unknown health conditions, damage indicators can be extracted from its passing vehicle's short-time vibration data using the trained model, and (3) The bridge's health states are determined by real-time extracted damage indicators. To verify the proposed idea, a U-shaped continuous beam and a model truck are used to simulate the vehicle bridge interaction system in engineering. Results showed that the proposed method could identify the bridge's damage with an accuracy of 86.2% when different severity was considered. In addition, it was observed that higher damage severity could not be revealed by greater values of damage indicators in the laboratory test. Instead, a novel index called identified damage ratios was employed as a reference for assessing the severity of the bridge's damage. It was shown that with the increase in damage severity, the index would increase and gradually approach 100%.
引用
收藏
页码:1167 / 1181
页数:15
相关论文
共 50 条
  • [41] A deep-learning framework for classifying the type, location, and severity of bridge damage using drive-by measurements
    Corbally, Robert
    Malekjafarian, Abdollah
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, 39 (06) : 852 - 871
  • [42] A semi-supervised deep auto-encoder based intrusion detection for iot
    Fenanir S.
    Semchedine F.
    Harous S.
    Baadache A.
    Fenanir, Samir (samir.fenanir@univ-setif.dz), 2020, International Information and Engineering Technology Association (25): : 569 - 577
  • [43] A Deep Learning Approach to Network Intrusion Detection Using a Proposed Supervised Sparse Auto-encoder and SVM
    Ghorbani, Ali
    Fakhrahmad, Seyed Mostafa
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2022, 46 (03) : 829 - 846
  • [44] Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine
    Pumsirirat, Apapan
    Yan, Liu
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (01) : 18 - 25
  • [45] A Deep Learning Approach to Network Intrusion Detection Using a Proposed Supervised Sparse Auto-encoder and SVM
    Ali Ghorbani
    Seyed Mostafa Fakhrahmad
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2022, 46 : 829 - 846
  • [46] Knacks of a hybrid anomaly detection model using deep auto-encoder driven gated recurrent unit
    Mushtaq, Earum
    Zameer, Aneela
    Nasir, Rubina
    COMPUTER NETWORKS, 2023, 226
  • [47] Structural Health Monitoring of Underground Metro Tunnel by Identifying Damage Using ANN Deep Learning Auto-Encoder
    Abbas, Nadeem
    Umar, Tariq
    Salih, Rania
    Akbar, Muhammad
    Hussain, Zahoor
    Haibei, Xiong
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [48] A portable real-time concrete bridge damage detection system
    Chen, Qi
    Jiang, Xiang
    MEASUREMENT, 2025, 240
  • [49] Drive-by bridge damage detection using Mel-frequency cepstral coefficients and support vector machine
    Li, Zhenkun
    Lin, Weiwei
    Zhang, Youqi
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (05): : 3302 - 3319
  • [50] Intelligent Fault Diagnosis of Bearing Using Enhanced Deep Transfer Auto-encoder
    Shao H.
    Zhang X.
    Cheng J.
    Yang Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (09): : 84 - 90