Structural Health Monitoring of Underground Metro Tunnel by Identifying Damage Using ANN Deep Learning Auto-Encoder

被引:18
|
作者
Abbas, Nadeem [1 ,2 ]
Umar, Tariq [3 ]
Salih, Rania [4 ]
Akbar, Muhammad [5 ]
Hussain, Zahoor [6 ,7 ]
Haibei, Xiong [1 ]
机构
[1] Tongji Univ, Dept Disaster Mitigat Struct, Shanghai 200070, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Civil Engn, Wuhan 430074, Peoples R China
[3] Univ West England, Architecture & Built Environm, Bristol BS16 1QY, England
[4] Red Sea Univ, Dept Civil Engn, Port Sudan 36481, Sudan
[5] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
[6] Zhengzhou Univ, Dept Civil Engn, Zhengzhou 450001, Peoples R China
[7] Sir Syed Univ Engn & Technol, Dept Civil Engn, Karachi 75300, Pakistan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
deep autoencoder (DAE); feature extraction; damage identification; moving load; structural health monitoring; CONVOLUTIONAL NEURAL-NETWORK; FAULT-DIAGNOSIS; IDENTIFICATION;
D O I
10.3390/app13031332
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the complexity of underground environmental conditions and operational incidents, advanced and accurate monitoring of the underground metro shield tunnel structures is crucial for maintenance and the prevention of mishaps. In the past few decades, numerous deep learning-based damage identification studies have been conducted on aboveground civil infrastructure. However, a few studies have been conducted for underground metro shield tunnels. This paper presents a deep learning-based damage identification study for underground metro shield tunnels. Based on previous experimental studies, a numerical model of a metro tunnel was utilized, and the vibration data obtained from the model under a moving load analysis was used for the evaluation. An existing deep auto-encoder (DAE) that can support deep neural networks was utilized to detect structural damage accurately by incorporating raw vibration signals. The dynamic analysis of a metro tunnel FEM model was conducted with different severity levels of the damage at different locations and elements on the structure. In addition, root mean square (RMS) was used to locate the damage at the different locations in the model. The results were compared under different schemes of white noise, varying levels of damage, and an intact state. To test the applicability of the proposed framework on a small dataset, the approach was also utilized to investigate the damage in a simply supported beam and compared with two deep learning-based methods (SVM and LSTM). The results show that the proposed DAE-based framework is feasible and efficient for the damage identification, damage size evaluation, and damage localization of the underground metro shield tunnel and a simply supported beam with comparison of two deep models.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Unsupervised deep learning approach using a deep auto-encoder with an one-class support vector machine to detect structural damage
    Wang, Zilong
    Cha, Young-Jin
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (01): : 406 - 425
  • [2] A deep learning method for lincRNA detection using auto-encoder algorithm
    Yu, Ning
    Yu, Zeng
    Pan, Yi
    BMC BIOINFORMATICS, 2017, 18 : 511
  • [3] Target Classification Using Convolutional Deep Learning and Auto-Encoder Models
    Zaied, Sarra
    Toumi, Abdelmalek
    Khenchaf, Ali
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [4] Shape cognition in map space using deep auto-encoder learning
    Yan X.
    Ai T.
    Yang M.
    Zheng J.
    Ai, Tinghua (tinghuaai@whu.edu.cn), 2021, SinoMaps Press (50): : 757 - 765
  • [5] A deep learning method for lincRNA detection using auto-encoder algorithm
    Ning Yu
    Zeng Yu
    Yi Pan
    BMC Bioinformatics, 18
  • [6] A Deep Learning Method for lincRNA Identification Using Auto-encoder Algorithm
    Yu, Ning
    Yu, Zeng
    Pan, Yi
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2016,
  • [7] Deep Representation Learning for Code Smells Detection using Variational Auto-Encoder
    Hadj-Kacem, Mouna
    Bouassida, Nadia
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [8] Deep Feature Learning for Tibetan Speech Recognition using Sparse Auto-encoder
    Wang, H.
    Zhao, Y.
    Liu, X. F.
    Xu, X. N.
    Wang, L.
    Zhou, N.
    Xu, Y. M.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 342 - 345
  • [9] Intrusion detection using deep sparse auto-encoder and self-taught learning
    Aqsa Saeed Qureshi
    Asifullah Khan
    Nauman Shamim
    Muhammad Hanif Durad
    Neural Computing and Applications, 2020, 32 : 3135 - 3147
  • [10] Intrusion detection using deep sparse auto-encoder and self-taught learning
    Qureshi, Aqsa Saeed
    Khan, Asifullah
    Shamim, Nauman
    Durad, Muhammad Hanif
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3135 - 3147