Link Prediction for Completing Graphical Software Models Using Neural Networks

被引:0
|
作者
Leblebici, Onur [1 ]
Tuglular, Tugkan [1 ]
Belli, Fevzi [1 ,2 ]
机构
[1] Izmir Inst Technol, Dept Comp Engn, TR-35430 Izmir, Turkiye
[2] Univ Paderborn, Dept Comp Sci Elect Engn & Math, D-33098 Paderborn, Germany
关键词
Software engineering; Predictive models; Graph neural networks; Graphical user interfaces; Graphical models; Data models; Behavioral sciences; Event detection; Couplings; Event-based modeling; graph neural networks; link prediction;
D O I
10.1109/ACCESS.2023.3323591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deficiencies and inconsistencies introduced during the modeling of software systems may result in high costs and negatively impact the quality of all developments performed using these models. Therefore, developing more accurate models will aid software architects in developing software systems that match and exceed expectations. This paper proposes a graph neural network (GNN) method for predicting missing connections, or links, in graphical models, which are widely employed in modeling software systems. The proposed method utilizes graphs as allegedly incomplete, primitive graphical models of the system under consideration (SUC) as input and proposes links between its elements through the following steps: (i) transform the models into graph-structured data and extract features from the nodes, (ii) train the GNN model, and (iii) evaluate the performance of the trained model. Two GNN models based on SEAL and DeepLinker are evaluated using three performance metrics, namely cross-entropy loss, area under curve, and accuracy. Event sequence graphs (ESGs) are used as an example of applying the approach to an event-based behavioral modeling technique. Examining the results of experiments conducted on various datasets and variations of GNN reveals that missing connections between events in an ESG can be predicted even with relatively small datasets generated from ESG models.
引用
收藏
页码:115934 / 115950
页数:17
相关论文
共 50 条
  • [41] Elementary Subgraph Features for Link Prediction With Neural Networks
    Fang, Zhihong
    Tan, Shaolin
    Wang, Yaonan
    Lu, Jinhu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3822 - 3831
  • [42] Line graph neural networks for link weight prediction
    Liang, Jinbi
    Pu, Cunlai
    Shu, Xiangbo
    Xia, Yongxiang
    Xia, Chengyi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 661
  • [43] Software maintainability prediction based on change metric using neural network models
    Vescan, Andreea
    Barac-Antonescu, Daniel
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 144
  • [44] Using neural network models in the quality management system for the software defect prediction
    Danilov, A. D.
    Samotsvet, D. A.
    Mugatina, V. M.
    INTERNATIONAL WORKSHOP ADVANCED TECHNOLOGIES IN MATERIAL SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING - MIP: ENGINEERING - 2019, 2019, 537
  • [45] Evaluating Link Prediction Explanations for Graph Neural Networks
    Borile, Claudio
    Perotti, Alan
    Panisson, Andre
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 382 - 401
  • [46] Networks for networks: Internet analysis using graphical statistical models
    Coates, M
    Nowak, R
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 755 - 764
  • [47] Protein function prediction using hidden Markov models and neural networks
    Fujiwara, Yukiko
    Asogawa, Minoru
    NEC Research and Development, 2002, 43 (04): : 238 - 241
  • [48] Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks
    Zielinska-Sitkiewicz, Monika
    Chrzanowska, Mariola
    Furmanczyk, Konrad
    Paczutkowski, Kacper
    ENERGIES, 2021, 14 (20)
  • [49] Protein function prediction using hidden Markov models and neural networks
    Fujiwara, Y
    Asogawa, M
    NEC RESEARCH & DEVELOPMENT, 2002, 43 (04): : 238 - 241
  • [50] Software cost estimation models using Radial Basis Function Neural Networks
    Idri, Ali
    Zahi, Azeddine
    Mendes, Emilia
    Zakrani, Abdelali
    SOFTWARE PROCESS AND PRODUCT MEASUREMENT, 2008, 4895 : 21 - +