Link Prediction for Completing Graphical Software Models Using Neural Networks

被引:0
|
作者
Leblebici, Onur [1 ]
Tuglular, Tugkan [1 ]
Belli, Fevzi [1 ,2 ]
机构
[1] Izmir Inst Technol, Dept Comp Engn, TR-35430 Izmir, Turkiye
[2] Univ Paderborn, Dept Comp Sci Elect Engn & Math, D-33098 Paderborn, Germany
关键词
Software engineering; Predictive models; Graph neural networks; Graphical user interfaces; Graphical models; Data models; Behavioral sciences; Event detection; Couplings; Event-based modeling; graph neural networks; link prediction;
D O I
10.1109/ACCESS.2023.3323591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deficiencies and inconsistencies introduced during the modeling of software systems may result in high costs and negatively impact the quality of all developments performed using these models. Therefore, developing more accurate models will aid software architects in developing software systems that match and exceed expectations. This paper proposes a graph neural network (GNN) method for predicting missing connections, or links, in graphical models, which are widely employed in modeling software systems. The proposed method utilizes graphs as allegedly incomplete, primitive graphical models of the system under consideration (SUC) as input and proposes links between its elements through the following steps: (i) transform the models into graph-structured data and extract features from the nodes, (ii) train the GNN model, and (iii) evaluate the performance of the trained model. Two GNN models based on SEAL and DeepLinker are evaluated using three performance metrics, namely cross-entropy loss, area under curve, and accuracy. Event sequence graphs (ESGs) are used as an example of applying the approach to an event-based behavioral modeling technique. Examining the results of experiments conducted on various datasets and variations of GNN reveals that missing connections between events in an ESG can be predicted even with relatively small datasets generated from ESG models.
引用
收藏
页码:115934 / 115950
页数:17
相关论文
共 50 条
  • [21] Link Duration Estimation using Neural Networks based Mobility Prediction in Vehicular Networks
    Alsharif, Nizar
    Aldubaikhy, Khalid
    Shen, Xuemin
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [22] Inference in Probabilistic Graphical Models by Graph Neural Networks
    Yoon, KiJung
    Liao, Renjie
    Xiong, Yuwen
    Zhang, Lisa
    Fetaya, Ethan
    Urtasun, Raquel
    Zemel, Richard
    Pitkow, Xaq
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 868 - 875
  • [23] Link Prediction Based on Graph Neural Networks
    Zhang, Muhan
    Chen, Yixin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [24] Neural Link Prediction Over Aligned Networks
    Cao, Xuezhi
    Chen, Haokun
    Wang, Xuejian
    Zhang, Weinan
    Yu, Yong
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 249 - 256
  • [25] A Link Prediction Method Based on Neural Networks
    Li, Keping
    Gu, Shuang
    Yan, Dongyang
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [26] Line Graph Neural Networks for Link Prediction
    Cai, Lei
    Li, Jundong
    Wang, Jie
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5103 - 5113
  • [27] Object-oriented software fault prediction using neural networks
    Kanmani, S.
    Uthariaraj, V. Rhymend
    Sankaranarayanan, V.
    Thambidurai, P.
    INFORMATION AND SOFTWARE TECHNOLOGY, 2007, 49 (05) : 483 - 492
  • [28] Software reliability prediction using neural networks with linear activation function
    Misra, RB
    Sasatte, PV
    ADVANCED RELIABILITY MODELING, 2004, : 333 - 340
  • [29] Improved Approach for Software Defect Prediction using Artificial Neural Networks
    Sethi, Tanvi
    Gagandeep
    2016 5TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO), 2016, : 480 - 485
  • [30] Implementing link prediction in protein networks via feature fusion models based on graph neural networks
    Zhang, Chi
    Gao, Qian
    Li, Ming
    Yu, Tianfei
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108