Multiplicatively Idempotent Semirings with Annihilator Condition

被引:0
|
作者
Vechtomov, E. M. [1 ]
Petrov, A. A. [1 ]
机构
[1] Vyatka State Univ, Kirov 610000, Russia
关键词
semiring; multiplicatively idempotent semiring; annihilator condition; Boolean ring; distributive lattice;
D O I
10.3103/S1066369X23030064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
-The structural theory of semirings with additional conditions is considered. Multiplicatively idempotent semirings with the annihilator condition are studied. General properties of such semirings are considered. Examples are given. A criterion for the fulfillment of the annihilator condition in an arbitrary multiplicatively idempotent semiring with zero is proved (Proposition 6). In terms of annihilators, new abstract characterizations of semirings isomorphic to the direct product of a Boolean ring with unit and a Boolean lattice (Theorem 1) are obtained. The direct product of a Boolean ring and a distributive lattice with the annihilator condition is a multiplicatively idempotent semiring with the annihilator condition. Generally speaking, the opposite is not true (Theorem 2). An example of a general nature of a multiplicatively idempotent semiring with unit and with the annihilator condition, which is not isomorphic to the direct product of a Boolean ring and a distributive lattice, is constructed. In conclusion, a number of supplements are given.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    Russian Mathematics, 2023, 67 : 23 - 31
  • [2] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [3] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [4] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [5] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617
  • [6] Congruence-simple multiplicatively idempotent semirings
    Tomáš Kepka
    Miroslav Korbelář
    Günter Landsmann
    Algebra universalis, 2023, 84
  • [7] The variety of commutative additively and multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2018, 96 : 409 - 415
  • [8] Subdirectly irreducible commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Algebra universalis, 2016, 76 : 327 - 337
  • [9] The variety of commutative additively and multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2018, 96 (02) : 409 - 415
  • [10] Congruence-simple multiplicatively idempotent semirings
    Kepka, Tomas
    Korbelar, Miroslav
    Landsmann, Guenter
    ALGEBRA UNIVERSALIS, 2023, 84 (02)