Clique-factors in graphs with sublinear ι-independence number

被引:2
|
作者
Han, Jie [1 ]
Hu, Ping [2 ]
Wang, Guanghui [3 ]
Yang, Donglei [4 ]
机构
[1] Beijing Inst Technol, Ctr Appl Math, Sch Math & Stat, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[3] Shandong Univ, Sch Math, Jinan, Peoples R China
[4] Shandong Univ, Data Sci Inst, Shandong, Peoples R China
来源
COMBINATORICS PROBABILITY & COMPUTING | 2023年 / 32卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Ramsey-Turan; Clique-factor; TURAN NUMBERS; RAMSEY; THEOREM; SETS;
D O I
10.1017/S0963548323000081
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G and an integer l >= 2, we denote by a alpha(l) (G) the maximum size of a Ke--free subset of vertices in V(G). A recent question ofNenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in n-vertex graphs G with alpha(tau) (G)= o(n), which can be seen as a RamseyTuran variant of the celebrated Hajnal-Szemeredi theorem. In this paper we find the asymptotical sharp minimum degree threshold for Kr-factors in n-vertex graphs G with alpha(l) (G) = n(1-o(1)) for all r >= l >= 2.
引用
收藏
页码:665 / 681
页数:17
相关论文
共 50 条
  • [1] Embedding clique-factors in graphs with low l-independence number
    Chang, Fan
    Han, Jie
    Kim, Jaehoon
    Wang, Guanghui
    Yang, Donglei
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 : 301 - 330
  • [2] Clique-factors in sparse pseudorandom graphs
    Han, Jie
    Kohayakawa, Yoshiharu
    Morris, Patrick
    Person, Yury
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 82
  • [3] Near-perfect clique-factors in sparse pseudorandom graphs
    Han, Jie
    Kohayakawa, Yoshiharu
    Person, Yury
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 570 - 590
  • [4] THE CLIQUE MINOR OF GRAPHS WITH INDEPENDENCE NUMBER TWO
    Pang, Shiyou
    Miao, Lianying
    Sun, Qingbo
    Miao, Zhengke
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (01) : 121 - 125
  • [5] Bounds on the Clique and the Independence Number for Certain Classes of Graphs
    Brimkov, Valentin E.
    Barneva, Reneta P.
    MATHEMATICS, 2024, 12 (02)
  • [6] Edge clique covers in graphs with independence number two
    Charbit, Pierre
    Hahn, Gena
    Kaminski, Marcin
    Lafond, Manuel
    Lichiardopol, Nicolas
    Naserasr, Reza
    Seamone, Ben
    Sherkati, Rezvan
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 324 - 339
  • [7] On sufficient conditions for equality of the independence number and the clique cover number for a class of graphs
    Prosolupov, E., V
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (01): : 90 - 103
  • [8] Clique transversal and clique independence on comparability graphs
    Balachandran, V
    Nagavamsi, P
    Rangan, CP
    INFORMATION PROCESSING LETTERS, 1996, 58 (04) : 181 - 184
  • [9] Clique immersions in graphs of independence number two with certain forbidden subgraphs
    Quiroz, Daniel A.
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [10] Minimal circular-imperfect graphs of large clique number and large independence number
    Pan, Zhishi
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1055 - 1063