Clique-factors in graphs with sublinear ι-independence number

被引:2
|
作者
Han, Jie [1 ]
Hu, Ping [2 ]
Wang, Guanghui [3 ]
Yang, Donglei [4 ]
机构
[1] Beijing Inst Technol, Ctr Appl Math, Sch Math & Stat, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[3] Shandong Univ, Sch Math, Jinan, Peoples R China
[4] Shandong Univ, Data Sci Inst, Shandong, Peoples R China
来源
COMBINATORICS PROBABILITY & COMPUTING | 2023年 / 32卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Ramsey-Turan; Clique-factor; TURAN NUMBERS; RAMSEY; THEOREM; SETS;
D O I
10.1017/S0963548323000081
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G and an integer l >= 2, we denote by a alpha(l) (G) the maximum size of a Ke--free subset of vertices in V(G). A recent question ofNenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in n-vertex graphs G with alpha(tau) (G)= o(n), which can be seen as a RamseyTuran variant of the celebrated Hajnal-Szemeredi theorem. In this paper we find the asymptotical sharp minimum degree threshold for Kr-factors in n-vertex graphs G with alpha(l) (G) = n(1-o(1)) for all r >= l >= 2.
引用
收藏
页码:665 / 681
页数:17
相关论文
共 50 条
  • [31] Clique factors in pseudorandom graphs
    Morris, Patrick
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (02)
  • [32] The list chromatic number of graphs with small clique number
    Molloy, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 264 - 284
  • [33] Linear vertex arboricity, independence number and clique cover number
    Lam, PCB
    Shiu, WC
    Sun, F
    Wang, JF
    Yan, GY
    ARS COMBINATORIA, 2001, 58 : 121 - 128
  • [34] Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs
    Bian, Qiuju
    Zhou, Sizhong
    FILOMAT, 2015, 29 (04) : 757 - 761
  • [35] INDEPENDENCE NUMBER, MINIMUM DEGREE AND PATH-FACTORS IN GRAPHS
    Wang, Sufang
    Zhang, Wei
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2022, 23 (03): : 229 - 234
  • [36] Laplacian spectral bounds for clique and independence numbers of graphs
    Lu, Mei
    Liu, Huiqing
    Tian, Feng
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 726 - 732
  • [37] On the structure of Dense graphs with bounded clique number
    Oberkampf, Heiner
    Schacht, Mathias
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 641 - 649
  • [38] On graphs with equal coprime index and clique number
    Patil, Chetan
    Khandekar, Nilesh
    Joshi, Vinayak
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 235 - 243
  • [39] Colouring perfect graphs with bounded clique number
    Chudnovsky, Maria
    Lagoutte, Aurelie
    Seymour, Paul
    Spirkl, Sophie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 757 - 775
  • [40] A New Spectral Bound on the Clique Number of Graphs
    Bulo, Samuel Rota
    Pelillo, Marcello
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 680 - 689