A Deep Learning Approach for Diabetic Foot Ulcer Classification and Recognition

被引:22
|
作者
Ahsan, Mehnoor [1 ]
Naz, Saeeda [1 ]
Ahmad, Riaz [2 ]
Ehsan, Haleema [1 ]
Sikandar, Aisha [1 ]
机构
[1] GGPGC 1, Comp Sci Dept, Abbottabad 22020, Pakistan
[2] Shaheed Benazir Bhutto Univ, Comp Sci Dept, Upper Dir 00384, Pakistan
关键词
DFU; AlexNet; VGG16; 19; GoogLeNet; ResNet50; 101; MobileNet; SqueezeNet; DenseNet; PREVENTION;
D O I
10.3390/info14010036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic foot ulcer (DFU) is one of the major complications of diabetes and results in the amputation of lower limb if not treated timely and properly. Despite the traditional clinical approaches used in DFU classification, automatic methods based on a deep learning framework show promising results. In this paper, we present several end-to-end CNN-based deep learning architectures, i.e., AlexNet, VGG16/19, GoogLeNet, ResNet50.101, MobileNet, SqueezeNet, and DenseNet, for infection and ischemia categorization using the benchmark dataset DFU2020. We fine-tune the weight to overcome a lack of data and reduce the computational cost. Affine transform techniques are used for the augmentation of input data. The results indicate that the ResNet50 achieves the highest accuracy of 99.49% and 84.76% for Ischaemia and infection, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection
    Basiri, Reza
    Popovic, Milos R.
    Khan, Shehroz S.
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 243 - 247
  • [22] DFU_XAI: A Deep Learning-Based Approach to Diabetic Foot Ulcer Detection Using Feature Explainability
    Shuvo Biswas
    Rafid Mostafiz
    Bikash Kumar Paul
    Khandaker Mohammad Mohi Uddin
    Md. Abdul Hadi
    Fahmida Khanom
    Biomedical Materials & Devices, 2024, 2 (2): : 1225 - 1245
  • [23] Plantar Thermogram Analysis Using Deep Learning for Diabetic Foot Risk Classification
    Panamonta, Vipawee
    Jerawatana, Ratanaporn
    Ariyaprayoon, Prapai
    Looareesuwan, Panu
    Ongphiphadhanakul, Benyapa
    Sriphrapradang, Chutintorn
    Chailurkit, Laor
    Ongphiphadhanakul, Boonsong
    JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2025,
  • [24] SwinDFU-Net: Deep learning transformer network for infection identification in diabetic foot ulcer
    Sumithra, M. G.
    Venkatesan, Chandran
    TECHNOLOGY AND HEALTH CARE, 2025, 33 (01) : 601 - 618
  • [25] A novel lightweight deep learning framework with knowledge distillation for efficient diabetic foot ulcer detection
    Amjad, Kamran
    Asif, Sohaib
    Waheed, Zafran
    Guo, Ying
    APPLIED SOFT COMPUTING, 2024, 167
  • [26] The Effect of Image Preprocessing Algorithms on Diabetic Foot Ulcer Classification
    Okafor, Njideka Chiamaka
    Cassidy, Bill
    O'Shea, Claire
    Pappachan, Joseph M.
    Yap, Moi Hoon
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024, 2024, 14860 : 336 - 352
  • [27] Diabetic Retinopathy Classification Using Hybrid Deep Learning Approach
    Menaouer B.
    Dermane Z.
    El Houda Kebir N.
    Matta N.
    SN Computer Science, 3 (5)
  • [28] DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification
    Goyal, Manu
    Reeves, Neil D.
    Davison, Adrian K.
    Rajbhandari, Satyan
    Spragg, Jennifer
    Yap, Moi Hoon
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (05): : 728 - 739
  • [29] The choice of diabetic foot ulcer classification in relation to the final outcome
    Van Acker, K
    De Block, C
    Abrams, P
    Bouten, A
    De Leeuw, I
    Droste, J
    Weyler, J
    Peter-Riesch, B
    WOUNDS-A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE, 2002, 14 (01): : 16 - 25
  • [30] DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network
    Laith Alzubaidi
    Mohammed A. Fadhel
    Sameer R. Oleiwi
    Omran Al-Shamma
    Jinglan Zhang
    Multimedia Tools and Applications, 2020, 79 : 15655 - 15677