A Deep Learning Approach for Diabetic Foot Ulcer Classification and Recognition

被引:22
|
作者
Ahsan, Mehnoor [1 ]
Naz, Saeeda [1 ]
Ahmad, Riaz [2 ]
Ehsan, Haleema [1 ]
Sikandar, Aisha [1 ]
机构
[1] GGPGC 1, Comp Sci Dept, Abbottabad 22020, Pakistan
[2] Shaheed Benazir Bhutto Univ, Comp Sci Dept, Upper Dir 00384, Pakistan
关键词
DFU; AlexNet; VGG16; 19; GoogLeNet; ResNet50; 101; MobileNet; SqueezeNet; DenseNet; PREVENTION;
D O I
10.3390/info14010036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic foot ulcer (DFU) is one of the major complications of diabetes and results in the amputation of lower limb if not treated timely and properly. Despite the traditional clinical approaches used in DFU classification, automatic methods based on a deep learning framework show promising results. In this paper, we present several end-to-end CNN-based deep learning architectures, i.e., AlexNet, VGG16/19, GoogLeNet, ResNet50.101, MobileNet, SqueezeNet, and DenseNet, for infection and ischemia categorization using the benchmark dataset DFU2020. We fine-tune the weight to overcome a lack of data and reduce the computational cost. Affine transform techniques are used for the augmentation of input data. The results indicate that the ResNet50 achieves the highest accuracy of 99.49% and 84.76% for Ischaemia and infection, respectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Automated Diabetic Foot Ulcer Detection and Classification Using Deep Learning
    Nagaraju, Sunnam
    Kumar, Kollati Vijaya
    Rani, B. Prameela
    Lydia, E. Laxmi
    Ishak, Mohamad Khairi
    Filali, Imen
    Karim, Faten Khalid
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 127578 - 127588
  • [2] DFU-SIAM a Novel Diabetic Foot Ulcer Classification With Deep Learning
    Toofanee, Mohammud Shaad Ally
    Dowlut, Sabeena
    Hamroun, Mohamed
    Tamine, Karim
    Petit, Vincent
    Duong, Anh Kiet
    Sauveron, Damien
    IEEE ACCESS, 2023, 11 : 98315 - 98332
  • [3] Diabetic Foot Ulcer Ischemia and Infection Classification Using EfficientNet Deep Learning Models
    Liu, Ziyang
    John, Josvin
    Agu, Emmanuel
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2022, 3 (189-201): : 189 - 201
  • [4] Deep Learning Classification for Diabetic Foot Thermograms
    Cruz-Vega, Israel
    Hernandez-Contreras, Daniel
    Peregrina-Barreto, Hayde
    de Jesus Rangel-Magdaleno, Jose
    Manuel Ramirez-Cortes, Juan
    SENSORS, 2020, 20 (06)
  • [5] Recognition of ischaemia and infection in diabetic foot ulcer: A deep convolutional neural network based approach
    Das, Sujit Kumar
    Roy, Pinki
    Mishra, Arnab Kumar
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 192 - 208
  • [6] Diabetic foot ulcer detection using deep learning approaches
    Thotad P.N.
    Bharamagoudar G.R.
    Anami B.S.
    Sensors International, 2023, 4
  • [7] Real-time diabetic foot ulcer classification based on deep learning & parallel hardware computational tools
    Fadhel, Mohammed A.
    Alzubaidi, Laith
    Gu, Yuantong
    Santamaria, Jose
    Duan, Ye
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (27) : 70369 - 70394
  • [8] A Deep Learning Approach to Diabetic Retinopathy Classification
    Oishi, Anika Mehjabin
    Tawfiq-Uz-Zaman, Md
    Emon, Mohammad Billal Hossain
    Momen, Sifat
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 417 - 425
  • [9] Application of Deep Learning Autoencoders as Features Extractor of Diabetic Foot Ulcer Images
    Alatrany, Abbas Saad
    Hussain, Abir
    Alatrany, Saad S. J.
    Al-Jumaily, Dhiya
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 129 - 140
  • [10] DFUCare: deep learning platform for diabetic foot ulcer detection, analysis, and monitoring
    Sendilraj, Varun
    Pilcher, William
    Choi, Dahim
    Bhasin, Aarav
    Bhadada, Avika
    Bhadadaa, Sanjay Kumar
    Bhasin, Manoj
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15