Effects of Shock Waves on Shack-Hartmann Wavefront Sensor Data

被引:10
|
作者
Kalensky, Matthew [1 ]
Kemnetz, Matthew R. [2 ]
Spencer, Mark F. [3 ]
机构
[1] Naval Surface Warfare Ctr Dahlgren Div, Integrated Engagement Syst Dept, Dahlgren, VA 22448 USA
[2] Air Force Res Lab, Directed Energy Directorate, Kirtland AFB, NM 87117 USA
[3] Air Force Inst Technol, Dept Engn Phys, Opt Sci & Engn, Wright Patterson AFB, OH 45433 USA
关键词
AEROOPTICAL ENVIRONMENT; FLOW; HEMISPHERE; SIMULATION; TURRETS;
D O I
10.2514/1.J062783
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Shock waves will form by turning supersonic or locally supersonic flow and result in an increase in the freestream density downstream of the shock. This increase leads to optical distortions that limit the effectiveness of aircraft mounted laser systems. In this paper, analytic expressions are developed to describe these optical distortions in terms of the optical-path difference (OPD). Pupil-plane disturbances imposed by the shock are studied for two cases: when the shock is parallel to the propagation direction and when the shock is on an angle relative to the propagation direction. Upon propagation from the pupil plane, the analysis shows that shock-induced phase discontinuities can sometimes cause the irradiance pattern in the image plane to bifurcate. Despite a large amount of tilt in the pupil plane, the bifurcated irradiance pattern does not map to a proportional shift in the image plane. The implications that these findings have on Shack-Hartmann wavefront sensor (SHWFS) data are also explored. The results show that least-squares reconstruction from the SHWFS data yield accurate estimates of the change in OPD across the shock when the magnitude of the phase difference delta phi caused by the shock is between 0 and approximately 0.5 pi [rad]. However, when vertical bar &Delta phi vertical bar > 0.5 pi [rad], the results show that least-squares reconstruction begins to severely underestimate the change in OPD across the shock. Such results will inform future efforts looking to develop aircraft-mounted laser systems.
引用
收藏
页码:2356 / 2368
页数:13
相关论文
共 50 条
  • [31] Reference-free Shack-Hartmann wavefront sensor
    Zhao, Liping
    Guo, Wenjiang
    Li, Xiang
    Chen, I-Ming
    OPTICS LETTERS, 2011, 36 (15) : 2752 - 2754
  • [32] Shack-Hartmann wavefront sensor based on Kalman filter
    Gu, De
    Liu, Xing
    OPTICAL ENGINEERING, 2022, 61 (09)
  • [33] Detection of phase singularities with a Shack-Hartmann wavefront sensor
    Chen, Mingzhou
    Roux, Filippus S.
    Olivier, Jan C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (07) : 1994 - 2002
  • [34] Accounting for focal shift in the Shack-Hartmann wavefront sensor
    Akondi, Vyas
    Dubra, Alfredo
    OPTICS LETTERS, 2019, 44 (17) : 4151 - 4154
  • [35] Atmospheric turbulence profiling with a Shack-Hartmann wavefront sensor
    Ogane, Hajime
    Akiyama, Masayuki
    Oya, Shin
    Ono, Yoshito H.
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
  • [36] Adaptive centroid optimization for Shack-Hartmann wavefront sensor
    Gan, Jinrui
    Jing, Wenbo
    Wang, Xiaoman
    2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [37] Shack-Hartmann wavefront sensor with large dynamic range
    Xia, Mingliang
    Li, Chao
    Hu, Lifa
    Cao, Zhaoliang
    Mu, Quanquan
    Li Xuan
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (02)
  • [38] Shack-Hartmann wavefront sensor for laser beam analyses
    Zavalova, VY
    Kudryashova, AV
    HIGH-RESOLUTION WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS III, 2002, 4493 : 277 - 284
  • [39] ANALYSIS OF ACCURACY OF SHACK-HARTMANN WAVEFRONT SENSOR MEASUREMENTS
    Zavalova, V. E.
    Aleksandrov, A. G.
    Kudryashov, A. V.
    Rukosuev, A. L.
    Sheldakova, Y. V.
    Romanov, P. N.
    CAOL 2008: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS, 2008, : 162 - 164
  • [40] Incoherent holography with the use of Shack-Hartmann wavefront sensor
    Gorelaya, A. V.
    Lukin, V. P.
    Sevryugin, A. A.
    Shubenkova, E. V.
    Venediktov, V. Yu.
    HOLOGRAPHY: ADVANCES AND MODERN TRENDS IV, 2015, 9508