Coalitional Federated Learning: Improving Communication and Training on Non-IID Data With Selfish Clients

被引:10
|
作者
Arisdakessian, Sarhad [1 ]
Wahab, Omar Abdel [1 ]
Mourad, Azzam [2 ]
Otrok, Hadi [3 ]
机构
[1] Polytech Montreal, Dept Comp Engn & Software Engn, Montreal, PQ H3T 1J4, Canada
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[3] Khalifa Univ, Dept EECS, Abu Dhabi 127788, U Arab Emirates
基金
加拿大自然科学与工程研究理事会;
关键词
Servers; Federated learning; Training; Data models; Computational modeling; Games; Convergence; Client selection; communication efficiency; federated learning; non-IID data; security; selfish client;
D O I
10.1109/TSC.2023.3246988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a new paradigm of Federated Learning (FL) for Internet of Things (IoT) devices called Coalitional Federated Learning. The proposed paradigm aims to address the challenges of (1) non-independent and identically distributed (non-IID) data across clients; (2) communication overhead due to the large number of messages exchanged between the server and clients; and (3) selfish clients that seek to obtain the latest global models without efficiently contributing to the training of the FL model. Our novel paradigm consists of three main components, i.e., (1) client-to-client trust establishment mechanism that relies on subjective and objective sources to enable clients to establish credible trust relationships toward one another; (2) trust-enabled coalitional game to enable clients to autonomously form harmonious coalitions of FL trainers; and (3) coalitional federated learning in which multiple local aggregations take place at the level of each coalition to mitigate the problems of non-IID data and communication bottleneck. Extensive experiments suggest that our solution outperforms both the standard vanilla FL approach and one state-of-the-art trust-based FL approach in terms of increasing the accuracy of the global FL model and decreasing the presence of selfish devices participating in the training.
引用
收藏
页码:2462 / 2476
页数:15
相关论文
共 50 条
  • [41] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [42] FedCML: Federated Clustering Mutual Learning with non-IID Data
    Chen, Zekai
    Wang, Fuyi
    Yu, Shengxing
    Liu, Ximeng
    Zheng, Zhiwei
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 623 - 636
  • [43] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [44] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [45] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [46] Feature Matching Data Synthesis for Non-IID Federated Learning
    Li, Zijian
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9352 - 9367
  • [47] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159
  • [48] Is Non-IID Data a Threat in Federated Online Learning to Rank?
    Wang, Shuyi
    Zuccon, Guido
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2801 - 2813
  • [49] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [50] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49