Multi-Scale Self-Supervised Graph Contrastive Learning With Injective Node Augmentation

被引:4
|
作者
Zhang, Haonan [1 ]
Ren, Yuyang [1 ]
Fu, Luoyi [1 ]
Wang, Xinbing [1 ]
Chen, Guihai [1 ]
Zhou, Chenghu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100045, Peoples R China
关键词
Graph contrastive learning; graph representation learning; node augmentation; self-supervised learning;
D O I
10.1109/TKDE.2023.3278463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Contrastive Learning (GCL) with Graph Neural Networks (GNN) has emerged as a promising method for learning latent node representations in a self-supervised manner. Most of existing GCL methods employ random sampling for graph view augmentation and maximize the agreement of the node representations between the views. However, the random augmentation manner, which is likely to produce very similar graph view samplings, may easily result in incomplete nodal contextual information, thus weakening the discrimination of node representations. To this end, this paper proposes a novel trainable scheme from the perspective of node augmentation, which is theoretically proved to be injective and utilizes the subgraphs consisting of each node with its neighbors to enhance the distinguishability of nodal view. Notably, our proposed scheme tries to enrich node representations via a multi-scale contrastive training that integrates three different levels of training granularity, i.e., subgraph level, graph- and node-level contextual information. In particular, the subgraph-level objective between augmented and original node views is constructed to enhance the discrimination of node representations while graph- and node-level objectives with global and local information from the original graph are developed to improve the generalization ability of representations. Experiment results demonstrate that our framework outperforms existing state-of-the-art baselines and even surpasses several supervised counterparts on four real-world datasets for node classification.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 50 条
  • [41] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104
  • [42] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [43] Multi-scale vision transformer classification model with self-supervised learning and dilated convolution
    Xing, Liping
    Jin, Hongmei
    Li, Hong-an
    Li, Zhanli
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [44] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180
  • [45] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [46] A comprehensive perspective of contrastive self-supervised learning
    Chen, Songcan
    Geng, Chuanxing
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (04)
  • [47] A comprehensive perspective of contrastive self-supervised learning
    Songcan Chen
    Chuanxing Geng
    Frontiers of Computer Science, 2021, 15
  • [48] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237
  • [49] Self-supervised contrastive learning for itinerary recommendation
    Chen, Lei
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [50] Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    Canu, Stephane
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2705 - 2715