Multi-Scale Self-Supervised Graph Contrastive Learning With Injective Node Augmentation

被引:4
|
作者
Zhang, Haonan [1 ]
Ren, Yuyang [1 ]
Fu, Luoyi [1 ]
Wang, Xinbing [1 ]
Chen, Guihai [1 ]
Zhou, Chenghu [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100045, Peoples R China
关键词
Graph contrastive learning; graph representation learning; node augmentation; self-supervised learning;
D O I
10.1109/TKDE.2023.3278463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Contrastive Learning (GCL) with Graph Neural Networks (GNN) has emerged as a promising method for learning latent node representations in a self-supervised manner. Most of existing GCL methods employ random sampling for graph view augmentation and maximize the agreement of the node representations between the views. However, the random augmentation manner, which is likely to produce very similar graph view samplings, may easily result in incomplete nodal contextual information, thus weakening the discrimination of node representations. To this end, this paper proposes a novel trainable scheme from the perspective of node augmentation, which is theoretically proved to be injective and utilizes the subgraphs consisting of each node with its neighbors to enhance the distinguishability of nodal view. Notably, our proposed scheme tries to enrich node representations via a multi-scale contrastive training that integrates three different levels of training granularity, i.e., subgraph level, graph- and node-level contextual information. In particular, the subgraph-level objective between augmented and original node views is constructed to enhance the discrimination of node representations while graph- and node-level objectives with global and local information from the original graph are developed to improve the generalization ability of representations. Experiment results demonstrate that our framework outperforms existing state-of-the-art baselines and even surpasses several supervised counterparts on four real-world datasets for node classification.
引用
收藏
页码:261 / 274
页数:14
相关论文
共 50 条
  • [21] Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection
    Wang, Xiaochuan
    Fang, Yuqi
    Wang, Qianqian
    Yap, Pew-Thian
    Zhu, Hongtu
    Liu, Mingxia
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [22] Contrastive Continuity on Augmentation Stability Rehearsal for Continual Self-Supervised Learning
    Cheng, Haoyang
    Wen, Haitao
    Zhang, Xiaoliang
    Qiu, Heqian
    Wang, Lanxiao
    Li, Hongliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5684 - 5694
  • [23] SCGC : Self-supervised contrastive graph clustering
    Kulatilleke, Gayan K.
    Portmann, Marius
    Chandra, Shekhar S.
    NEUROCOMPUTING, 2025, 611
  • [24] Self-supervised Graph-level Representation Learning with Adversarial Contrastive Learning
    Luo, Xiao
    Ju, Wei
    Gu, Yiyang
    Mao, Zhengyang
    Liu, Luchen
    Yuan, Yuhui
    Zhang, Ming
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (02)
  • [25] Federated Graph Anomaly Detection via Contrastive Self-Supervised Learning
    Kong, Xiangjie
    Zhang, Wenyi
    Wang, Hui
    Hou, Mingliang
    Chen, Xin
    Yan, Xiaoran
    Das, Sajal K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [26] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [27] Negative sampling strategies for contrastive self-supervised learning of graph representations
    Hafidi, Hakim
    Ghogho, Mounir
    Ciblat, Philippe
    Swami, Ananthram
    SIGNAL PROCESSING, 2022, 190
  • [28] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [29] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [30] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876